
Paolo Bestagini
Ph.D.

paolo.bestagini@polimi.it

REVERSE ENGINEERING OF VIDEO
CONTENT FOR FORENSIC ANALYSIS

Paolo Bestagini

Motivations !2

Paolo Bestagini

Motivations

Diffusion of multimedia sharing platforms

!2

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms

!3

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms
• Huge amount of user-generated content

!3

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms
• Huge amount of user-generated contentAvailability of user-friendly editing software

!3

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms
• Huge amount of user-generated content

• Availability of user-friendly video-editing software

!4

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms
• Huge amount of user-generated content

• Availability of user-friendly video-editing software
• Easy to tamper with videos

!4

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms
• Huge amount of user-generated content

• Availability of user-friendly video-editing software
• Easy to tamper with videos

We cannot trust what we see!

!4

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms
• Huge amount of user-generated content

• Availability of user-friendly video-editing software
• Easy to tamper with videos

We cannot trust what we see!

!4

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms
• Huge amount of user-generated content

• Availability of user-friendly video-editing software
• Easy to tamper with videos

We cannot trust what we see!

!4

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms
• Huge amount of user-generated content

• Availability of user-friendly video-editing software
• Easy to tamper with videos

We cannot trust what we see!

!4

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms
• Huge amount of user-generated content

• Availability of user-friendly video-editing software
• Easy to tamper with videos

We cannot trust what we see!

!4

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms
• Huge amount of user-generated content

• Availability of user-friendly video-editing software
• Easy to tamper with videos

We cannot trust what we see!

!4

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms
• Huge amount of user-generated content

• Availability of user-friendly video-editing software
• Easy to tamper with videos

• We cannot trust what we see!

!5

Paolo Bestagini

Motivations

• Diffusion of multimedia sharing platforms
• Huge amount of user-generated content

• Availability of user-friendly video-editing software
• Easy to tamper with videos

• We cannot trust what we see!TRACE B
ACK

FIL
E H

IS
TORY

!5

Paolo Bestagini

Objectives !6

Paolo Bestagini

Objectives

• What can we do?
• To develop a series of blind algorithms and tools for video

forensic analyses working in a real world scenario.

!6

Paolo Bestagini

Objectives

• What can we do?
• To develop a series of blind algorithms and tools for video

forensic analyses working in a real world scenario.

• How?
• Every non-reversible operation leaves peculiar footprints.
• Footprints as an asset.

!6

Paolo Bestagini

Objectives

• What can we do?
• To develop a series of blind algorithms and tools for video

forensic analyses working in a real world scenario.

• How?
• Every non-reversible operation leaves peculiar footprints.
• Footprints as an asset.

14

(a) original (b) compressed

Fig. 4: Original (a) and compressed (b) frames of a standard video sequence. The high compression rate is responsible

for blocking artifacts.

generated the video content; iii) estimate the quality of the reconstructed video without the availability

of the original source. In the literature, the methods aiming at estimating different coding parameters

and syntax elements characterizing the adopted codec can be grouped into three main categories, which

are further described below: i) approaches detecting block boundaries; ii) approaches estimating the

quantization parameters, and; iii) approaches estimating the motion vectors.

1) Block detection: Most video coding architectures encode frames on a block-by-block basis. For

this reason, artifacts at block boundaries can be exploited to reveal traces of previous compression steps.

Typical blocking artifacts are shown in Fig 4. Identifying block boundaries allows also estimating the

block size. It is possible to detect block-wise coding operations by checking local pixel consistency, as

shown in [24], [25]. There, the authors evaluate whether the statistics of pixel differences across blocks

differ from those of pixels within the same block. In this case, the image is supposed to be the result

of block-wise compression. In [48], the block size in a compressed video sequence is estimated by

analyzing the reconstructed picture in the frequency domain and detecting those peaks that are related to

discontinuities at block boundaries, rather than intrinsic features of the underlying image.

However, some modern video coding architectures (including, e.g., H.264/AVC as well as the recent

HEVC standard under development) enable to use a deblocking filter to smooth artifacts at block

boundaries, in addition to variable block sizes (also with non-square blocks). In these situations, traditional

block detection methods fail, leaving this as an open issue for further investigations.

2) Quantization step detection: Scalar quantization in the transform domain leaves a very common

footprint in the histogram of transform coefficients. Indeed, the histogram of each coefficient Yr(i, j)

shows a typical comb-like distribution, in which the peaks are spaced apart by ∆(i, j), instead of a

June 29, 2012 DRAFT

!6

Paolo Bestagini

Objectives

• What can we do?
• To develop a series of blind algorithms and tools for video

forensic analyses working in a real world scenario.

• How?
• Every non-reversible operation leaves peculiar footprints.
• Footprints as an asset.

14

(a) original (b) compressed

Fig. 4: Original (a) and compressed (b) frames of a standard video sequence. The high compression rate is responsible

for blocking artifacts.

generated the video content; iii) estimate the quality of the reconstructed video without the availability

of the original source. In the literature, the methods aiming at estimating different coding parameters

and syntax elements characterizing the adopted codec can be grouped into three main categories, which

are further described below: i) approaches detecting block boundaries; ii) approaches estimating the

quantization parameters, and; iii) approaches estimating the motion vectors.

1) Block detection: Most video coding architectures encode frames on a block-by-block basis. For

this reason, artifacts at block boundaries can be exploited to reveal traces of previous compression steps.

Typical blocking artifacts are shown in Fig 4. Identifying block boundaries allows also estimating the

block size. It is possible to detect block-wise coding operations by checking local pixel consistency, as

shown in [24], [25]. There, the authors evaluate whether the statistics of pixel differences across blocks

differ from those of pixels within the same block. In this case, the image is supposed to be the result

of block-wise compression. In [48], the block size in a compressed video sequence is estimated by

analyzing the reconstructed picture in the frequency domain and detecting those peaks that are related to

discontinuities at block boundaries, rather than intrinsic features of the underlying image.

However, some modern video coding architectures (including, e.g., H.264/AVC as well as the recent

HEVC standard under development) enable to use a deblocking filter to smooth artifacts at block

boundaries, in addition to variable block sizes (also with non-square blocks). In these situations, traditional

block detection methods fail, leaving this as an open issue for further investigations.

2) Quantization step detection: Scalar quantization in the transform domain leaves a very common

footprint in the histogram of transform coefficients. Indeed, the histogram of each coefficient Yr(i, j)

shows a typical comb-like distribution, in which the peaks are spaced apart by ∆(i, j), instead of a

June 29, 2012 DRAFT

!6

Paolo Bestagini

Objectives

• What can we do?
• To develop a series of blind algorithms and tools for video

forensic analyses working in a real world scenario.

• How?
• Every non-reversible operation leaves peculiar footprints.
• Footprints as an asset.

14

(a) original (b) compressed

Fig. 4: Original (a) and compressed (b) frames of a standard video sequence. The high compression rate is responsible

for blocking artifacts.

generated the video content; iii) estimate the quality of the reconstructed video without the availability

of the original source. In the literature, the methods aiming at estimating different coding parameters

and syntax elements characterizing the adopted codec can be grouped into three main categories, which

are further described below: i) approaches detecting block boundaries; ii) approaches estimating the

quantization parameters, and; iii) approaches estimating the motion vectors.

1) Block detection: Most video coding architectures encode frames on a block-by-block basis. For

this reason, artifacts at block boundaries can be exploited to reveal traces of previous compression steps.

Typical blocking artifacts are shown in Fig 4. Identifying block boundaries allows also estimating the

block size. It is possible to detect block-wise coding operations by checking local pixel consistency, as

shown in [24], [25]. There, the authors evaluate whether the statistics of pixel differences across blocks

differ from those of pixels within the same block. In this case, the image is supposed to be the result

of block-wise compression. In [48], the block size in a compressed video sequence is estimated by

analyzing the reconstructed picture in the frequency domain and detecting those peaks that are related to

discontinuities at block boundaries, rather than intrinsic features of the underlying image.

However, some modern video coding architectures (including, e.g., H.264/AVC as well as the recent

HEVC standard under development) enable to use a deblocking filter to smooth artifacts at block

boundaries, in addition to variable block sizes (also with non-square blocks). In these situations, traditional

block detection methods fail, leaving this as an open issue for further investigations.

2) Quantization step detection: Scalar quantization in the transform domain leaves a very common

footprint in the histogram of transform coefficients. Indeed, the histogram of each coefficient Yr(i, j)

shows a typical comb-like distribution, in which the peaks are spaced apart by ∆(i, j), instead of a

June 29, 2012 DRAFT

!6

Paolo Bestagini

Objectives

• What can we do?
• To develop a series of blind algorithms and tools for video

forensic analyses working in a real world scenario.

• How?
• Every non-reversible operation leaves peculiar footprints.
• Footprints as an asset.

14

(a) original (b) compressed

Fig. 4: Original (a) and compressed (b) frames of a standard video sequence. The high compression rate is responsible

for blocking artifacts.

generated the video content; iii) estimate the quality of the reconstructed video without the availability

of the original source. In the literature, the methods aiming at estimating different coding parameters

and syntax elements characterizing the adopted codec can be grouped into three main categories, which

are further described below: i) approaches detecting block boundaries; ii) approaches estimating the

quantization parameters, and; iii) approaches estimating the motion vectors.

1) Block detection: Most video coding architectures encode frames on a block-by-block basis. For

this reason, artifacts at block boundaries can be exploited to reveal traces of previous compression steps.

Typical blocking artifacts are shown in Fig 4. Identifying block boundaries allows also estimating the

block size. It is possible to detect block-wise coding operations by checking local pixel consistency, as

shown in [24], [25]. There, the authors evaluate whether the statistics of pixel differences across blocks

differ from those of pixels within the same block. In this case, the image is supposed to be the result

of block-wise compression. In [48], the block size in a compressed video sequence is estimated by

analyzing the reconstructed picture in the frequency domain and detecting those peaks that are related to

discontinuities at block boundaries, rather than intrinsic features of the underlying image.

However, some modern video coding architectures (including, e.g., H.264/AVC as well as the recent

HEVC standard under development) enable to use a deblocking filter to smooth artifacts at block

boundaries, in addition to variable block sizes (also with non-square blocks). In these situations, traditional

block detection methods fail, leaving this as an open issue for further investigations.

2) Quantization step detection: Scalar quantization in the transform domain leaves a very common

footprint in the histogram of transform coefficients. Indeed, the histogram of each coefficient Yr(i, j)

shows a typical comb-like distribution, in which the peaks are spaced apart by ∆(i, j), instead of a

June 29, 2012 DRAFT

!6

Paolo Bestagini

Objectives

• What can we do?
• To develop a series of blind algorithms and tools for video

forensic analyses working in a real world scenario.

• How?
• Every non-reversible operation leaves peculiar footprints.
• Footprints as an asset.

14

(a) original (b) compressed

Fig. 4: Original (a) and compressed (b) frames of a standard video sequence. The high compression rate is responsible

for blocking artifacts.

generated the video content; iii) estimate the quality of the reconstructed video without the availability

of the original source. In the literature, the methods aiming at estimating different coding parameters

and syntax elements characterizing the adopted codec can be grouped into three main categories, which

are further described below: i) approaches detecting block boundaries; ii) approaches estimating the

quantization parameters, and; iii) approaches estimating the motion vectors.

1) Block detection: Most video coding architectures encode frames on a block-by-block basis. For

this reason, artifacts at block boundaries can be exploited to reveal traces of previous compression steps.

Typical blocking artifacts are shown in Fig 4. Identifying block boundaries allows also estimating the

block size. It is possible to detect block-wise coding operations by checking local pixel consistency, as

shown in [24], [25]. There, the authors evaluate whether the statistics of pixel differences across blocks

differ from those of pixels within the same block. In this case, the image is supposed to be the result

of block-wise compression. In [48], the block size in a compressed video sequence is estimated by

analyzing the reconstructed picture in the frequency domain and detecting those peaks that are related to

discontinuities at block boundaries, rather than intrinsic features of the underlying image.

However, some modern video coding architectures (including, e.g., H.264/AVC as well as the recent

HEVC standard under development) enable to use a deblocking filter to smooth artifacts at block

boundaries, in addition to variable block sizes (also with non-square blocks). In these situations, traditional

block detection methods fail, leaving this as an open issue for further investigations.

2) Quantization step detection: Scalar quantization in the transform domain leaves a very common

footprint in the histogram of transform coefficients. Indeed, the histogram of each coefficient Yr(i, j)

shows a typical comb-like distribution, in which the peaks are spaced apart by ∆(i, j), instead of a

June 29, 2012 DRAFT

2. Overview of the state-of-the-art

−20 0 20
0

20

40

−20 0 20
0

20

40

−20 0 20
0

20

40

−20 0 20
0

100

200

−20 0 20
0

200

400

−20 0 20
0

200

400
c1

c1

c2

c2

c3

c3

Figure 2.5.: Histograms of DCT coefficients (c1, c2, c3) before (first row) and after (second row) quantisation.
The quantisation step ∆(i, j) can be estimated by the gaps between consecutive peaks.

To this end, the work in [28] and [29] proposes to exploit this footprint to es-

timate the quality factor of JPEG compression. Specifically, the envelope of the

comb-shaped histogram is approximated by means of a Gaussian distribution for

DC coefficients, and a Laplacian distribution for AC coefficients. Then, the quality

factor is estimated with a maximum likelihood (ML) approach, where the quantised

coefficients are used as observations, and data coming from uniform and saturated

blocks is discarded to make the estimation more robust.

In [54] the authors propose a method for estimating the elements of the whole

quantisation table. Separate histograms are computed for each DCT coefficient sub-

band (i, j). Analysing the periodicity of the power spectrum, it is possible to extract

the quantisation step ∆(i, j) for each sub-band. Periodicity is detected with a method

based on the second order derivative applied to the histograms.

In [27], another method based on the histograms of DCT coefficients is proposed.

There, the authors estimate the quantisation table as a linear combination of ex-

isting quantisation tables. A first estimate of the quantisation step size for each

DCT band is obtained from the distance between adjacent peaks of the histogram

of transformed coefficients. However, in most cases, high-frequency coefficients do

not contain enough information. For this reason some elements of the quantisation

matrix cannot be reconstructed, and they are estimated as a linear combination (pre-

serving the already obtained quantisation steps) of other existing quantisation tables

collected into a database.

28

!6

Paolo Bestagini

Objectives

• What can we do?
• To develop a series of blind algorithms and tools for video

forensic analyses working in a real world scenario.

• How?
• Every non-reversible operation leaves peculiar footprints.
• Footprints as an asset.

14

(a) original (b) compressed

Fig. 4: Original (a) and compressed (b) frames of a standard video sequence. The high compression rate is responsible

for blocking artifacts.

generated the video content; iii) estimate the quality of the reconstructed video without the availability

of the original source. In the literature, the methods aiming at estimating different coding parameters

and syntax elements characterizing the adopted codec can be grouped into three main categories, which

are further described below: i) approaches detecting block boundaries; ii) approaches estimating the

quantization parameters, and; iii) approaches estimating the motion vectors.

1) Block detection: Most video coding architectures encode frames on a block-by-block basis. For

this reason, artifacts at block boundaries can be exploited to reveal traces of previous compression steps.

Typical blocking artifacts are shown in Fig 4. Identifying block boundaries allows also estimating the

block size. It is possible to detect block-wise coding operations by checking local pixel consistency, as

shown in [24], [25]. There, the authors evaluate whether the statistics of pixel differences across blocks

differ from those of pixels within the same block. In this case, the image is supposed to be the result

of block-wise compression. In [48], the block size in a compressed video sequence is estimated by

analyzing the reconstructed picture in the frequency domain and detecting those peaks that are related to

discontinuities at block boundaries, rather than intrinsic features of the underlying image.

However, some modern video coding architectures (including, e.g., H.264/AVC as well as the recent

HEVC standard under development) enable to use a deblocking filter to smooth artifacts at block

boundaries, in addition to variable block sizes (also with non-square blocks). In these situations, traditional

block detection methods fail, leaving this as an open issue for further investigations.

2) Quantization step detection: Scalar quantization in the transform domain leaves a very common

footprint in the histogram of transform coefficients. Indeed, the histogram of each coefficient Yr(i, j)

shows a typical comb-like distribution, in which the peaks are spaced apart by ∆(i, j), instead of a

June 29, 2012 DRAFT

2. Overview of the state-of-the-art

−20 0 20
0

20

40

−20 0 20
0

20

40

−20 0 20
0

20

40

−20 0 20
0

100

200

−20 0 20
0

200

400

−20 0 20
0

200

400
c1

c1

c2

c2

c3

c3

Figure 2.5.: Histograms of DCT coefficients (c1, c2, c3) before (first row) and after (second row) quantisation.
The quantisation step ∆(i, j) can be estimated by the gaps between consecutive peaks.

To this end, the work in [28] and [29] proposes to exploit this footprint to es-

timate the quality factor of JPEG compression. Specifically, the envelope of the

comb-shaped histogram is approximated by means of a Gaussian distribution for

DC coefficients, and a Laplacian distribution for AC coefficients. Then, the quality

factor is estimated with a maximum likelihood (ML) approach, where the quantised

coefficients are used as observations, and data coming from uniform and saturated

blocks is discarded to make the estimation more robust.

In [54] the authors propose a method for estimating the elements of the whole

quantisation table. Separate histograms are computed for each DCT coefficient sub-

band (i, j). Analysing the periodicity of the power spectrum, it is possible to extract

the quantisation step ∆(i, j) for each sub-band. Periodicity is detected with a method

based on the second order derivative applied to the histograms.

In [27], another method based on the histograms of DCT coefficients is proposed.

There, the authors estimate the quantisation table as a linear combination of ex-

isting quantisation tables. A first estimate of the quantisation step size for each

DCT band is obtained from the distance between adjacent peaks of the histogram

of transformed coefficients. However, in most cases, high-frequency coefficients do

not contain enough information. For this reason some elements of the quantisation

matrix cannot be reconstructed, and they are estimated as a linear combination (pre-

serving the already obtained quantisation steps) of other existing quantisation tables

collected into a database.

28

!6

Paolo Bestagini

Analysis on a single video !7

Paolo Bestagini

Analysis on a single video

Video
forensics

!7

Paolo Bestagini

Analysis on a single video

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Video
forensics

!7

Paolo Bestagini

Analysis on a single video

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Video
forensics

!7

Paolo Bestagini

Analysis on a single video

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Video
forensics

!7

Paolo Bestagini

Analysis on a single video

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Video
forensics

!7

Paolo Bestagini

Analysis on a single video

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Video
forensics

Number of
compressions

Type of
codec

!7

Paolo Bestagini

Analysis on a single video

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Video
forensics

Number of
compressions

Type of
codec

Image
splicing

Video
copy-paste

Video
copy-move

!7

Paolo Bestagini

Analysis on a single video

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Video
forensics

Number of
compressions

Type of
codec

Image
splicing

Video
copy-paste

Video
copy-move

Re-capture

!7

Paolo Bestagini

Work organisation

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Video
forensics

Number of
compressions

Type of
codec

Image
splicing

Video
copy-paste

Video
copy-move

Re-capture

Paolo Bestagini

Work organisation

Coding-based
footprints

Editing-based
footprints

Number of
compressions

Type of
codec

Image
splicing

Paolo Bestagini

Coding-based footprints

• Videos are often encoded multiple times during their life-time
• Information about acquisition device
• The number of compression steps is an indicator of a video reliability

editing sharing
scene capturing

!9

Paolo Bestagini

How many times has the video been compressed?

!10

[Bestagini et al. MMSP 2012]

Paolo Bestagini

Coding-based footprints: multiple compression

• Video coding:
• Temporal redundancy

• Spatial redundancy

!11

Paolo Bestagini

Coding-based footprints: multiple compression

• Benford’s law:

• The distribution of the first digit (FD) of a single quantized DCT
coefficient approximatively follows Benford’s law:

• When multiple quantized, this law does not hold!

!12

Prediction

Trans.

De-Quant.

Quant.

I-Trans.

Memory

Input sequence

Entropy

Coder

Output stream

+ -

+ +

X
n

E
n Y

n
Y

 ,n

Y
r,n

E
r,n

X
r,n

X
p,n

D

Fig. 1. Block diagram for generic video compression.

more complex because of motion estimation that alters the
alignment between blocks mixing coefficient statistics.

In the following, Section II describes the behavior of DCT
coefficient statistics, as they go through multiple quantiza-
tion stages, analyzing the theoretical aspects of the problem.
Section III presents the proposed classification method based
on multiple SVM. Experimental results are reported in Sec-
tion IV, and final conclusions are drawn in Section V.

II. MULTIPLE COMPRESSIONS AND COEFFICIENTS

STATISTICS

Most of the recent video compression standards combines
spatial and/or temporal prediction with block-based transform
coding. At the n-th compression stage, the input frame is
divided into K regular blocks Xk

n, k = 1, ...,K , which are
spatially or temporally predicted by a predictor block. From
now on we omit the apex k for compactness without loss of
generality, focusing on a single block at a given compression
step. The predictor Xp,n is chosen among the pixel blocks
of the previously reconstructed frames (see Figure 1). The
residual block En = Xn − Xp,n is then transformed and
the resulting block Yn of coefficients is quantized into the
block Y∆,n. Most of the time quantization is performed in-
dependently on each coefficient using a uniformly-distributed
output levels with a dead-zone around the zero in order to
maximize the percentage of null reconstructed coefficients. In
the adopted notation, the quantization levels are

Y∆,n(i, j) = sign(Yn(i, j))round

(

|Yn(i, j)|

∆n(i, j)

)

, (1)

where the indexes (i, j) denote the position of the elements
in the block. The adopted quantization step at the n-th com-
pression stage is ∆n(i, j), which may change according to the
spatial frequencies of the coefficient and the type of coding
for the current block. The coded block Yr,n can be recon-
structed by multiplying the quantized values Y∆,n(i, j) with
the corresponding quantization step ∆n(i, j). The displayed
block Xr,n can be obtained by inversely transform the block
Yr,n and adding the corresponding predictor. As a result, it
is possible to model the coding distortion with the distortion
block Dr,n so that Xr,n = Xn + Dr,n. Note that, in case
of medium-high distortions, the distortion Dr,n is correlated
with the quantized signal.

These operations can be iterated multiple times (see Fig-
ure 2) by re-encoding the output sequence after some eventual

Coding

Input sequence

Iteration n

X n

Processing

Decoding

Fig. 2. Block diagram for multiple compression.

processing steps (e.g., cropping, rescaling, etc...). As a result,
the coefficient statistics is altered according to the number of
compression stages that were applied to the original data.

Let us consider the double compression case. After the
first coding stage, the output signal is Xr,1 = X1 + Dr,1

where Dr,1 is correlated with the error E1 = X1 − Xp,1.
During the second coding stage, X2 = Xr,1 is predicted by
Xp,2 = Xp,1 +D

p
r,2, where D

p
r,2 is the distortion introduced

on the predictor by the second compression. In this case,
we assume that the estimated motion vectors (MVs) are
approximately the same because of either the smoothness of
motion field or the regularity among MVs introduced by rate-
distortion optimization (i.e., smooth MV fields permit a more
effective compression of MV data) and MV prediction.

Therefore, the second compression stage has to quantize
E2 = E1 + Dr,1 − D

p
r,2, where D

p
r,2 is uncorrelated with

E1+Dr,1 since it is referred to previous blocks. It is possible
to notice that, assuming that a uniform quantizer is chosen,
the statistics of quantized E2 for a given realization of D

p
r,2

equals a shifted version of the statistics of quantized E1 +
Dr,1. Averaging the probability mass function (pmf) over the
different realizations of D

p
r,2 we have that the statistics of

quantized E2 equals the statistics of a double quantization on
E1 (statistics of E1+Dr,1+Dr,2). From these assumptions, it
is possible to relate the statistics of double video compression
to the analysis of double quantization for random variables.

In the case of transform coefficients from video coding
(which can be modeled with exponential variables), it is
possible to detect the number of quantizations by analyzing
the violations of Benford’s law (also known as first digit law
or significant digit law) for the quantized transform coefficients
[10]. Let m denote the first digit (FD) m of coefficient
Y∆,n(i, j), i.e.

m = FD(Y∆,n(i, j)) =

⌊

|Y∆,n(i, j)|

10⌊log10 |Y∆,n(i,j)|⌋

⌋

. (2)

It has been observed that the empirical pmf p̂(m) of m follows
the generalized equation

p(m) = K log10

(

1 +
1

α+mβ

)

, with m = 1, . . . , 9. (3)

According to the pmf deviation with respect to the above
equation, it is possible to detect whether m has been generated
from Y∆,n(i, j) or Y∆,m(i, j), with n ̸= m. In fact, whenever
n = 1, the pmf p̂(m) computed from Y∆,n(i, j) satisfies

Paolo Bestagini

Coding-based footprints: multiple compression

• Single quantized:

• Double quantized:

!13

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F irst sign ifi c ant d igi t - m

P
ro

b
a
b
il
it
y

F S D (X)
B en f ord law

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F irst sign ifi c ant d igi t - m

P
ro

b
a
b
il
it
y

F S D (X)
B en f ord law

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F irst sign ifi c ant d igi t - m

P
ro

b
a
b
il
it
y

F S D (X)
B en f ord law

� = 0.1 � = 0.2 � = 0.5

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F irst sign ifi c ant d igi t - m

P
ro

b
a
b
il
it
y

F S D (X)
B en f ord law

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F irst sign ifi c ant d igi t - m

P
ro

b
a
b
il
it
y

F S D (X)
B en f ord law

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F irst sign ifi c ant d igi t - m

P
ro

b
a
b
il
it
y

F S D (X)
B en f ord law

�1 = 0.1,�2 = 0.8 �1 = 0.1,�2 = 0.11 �1 = 0.1,�2 = 0.15

Paolo Bestagini

Coding-based footprints: multiple compression

• Method 1:
• Compute FD histograms for a set of

DCT frequencies.
• Train a set of SVMs.
• Combine SVMs outputs.

• Results:
• Up to three compressions successfully detected

3.4. Experimental results

0 0.5 1
0

0.5

1

False positive

T
ru

e
 p

o
si

tiv
e

T
1

w
2,3

(a)

0 0.5 1
0

0.5

1

False positive

T
ru

e
 p

o
si

tiv
e

T
1

w
2,3

(b)

Figure 3.21.: ROC curves comparing T1 vs. w2,3. a) Results on training set b) Results on test set.

Table 3.2.: Confusion matrix for QPN = 25.
N , N* 1 2 3

1 100 % 0.00 % 0.00 %
2 0.00 % 73.89 % 26.11 %
3 0.00 % 22.22 % 77.78 %

classification operated in [91] or in [30]). It is possible to notice that although the

performance of w2,3 is optimal on the training set (where it has been optimized by

the SVM learning routine), its performances dramatically fall when applied to test

data. The parameter T1 limits the accuracy decrement and permits improving both

accuracy and recall. Notice that the ROC curve is referred to classification oper-

ated using only parameter T1, while the overall classification process is operated on

the combination of T1 and T2, leading to the much more accurate results shown in

Table 3.2.

Therefore, it is possible to conclude that the proposed solution works very well as

a double compression detector and, moreover, permits revealing the eventuality that

some additional compression has been operated previously.

3.4.2. Video codec and GOP

In order to validate the video codec and GOP detectors, in this section we present

results obtained using different video sequences and encoding parameters. In par-

ticular for any experiment, we pick test sequences from a dataset composed of six

video sequences: four at CIF spatial resolution (352×288), namely Foreman, Mobile,

77

!14

−15 −10 −5 0 5 10
−3

−2

−1

0

1

2

3

4

5

6

1

2

N=1
N=2
N=3

T

T

Fig. 6. Parameters T1 and T2 used to discriminate N = 2 from N = 3 for
different data sets.

TABLE I
TRAINING AND TEST SEQUENCES

Training
foreman news mobile
crew city salesman
table paris flower
irene bridgeclose waterfall

Test
soccer tempete

Actually the additional classifiers w3,1 and w1,3 permit making
the global classifier more robust since the arrays of SVM
support are also derived from class N = 1 whose features
present a lower similarity with respect to N = 3. As a matter
of fact, a single SVM classifier could sometimes be unable
to discriminate the correct number of compression. However,
by combining variables together it is possible to enforce an
inaccurate classifier with the results from the other tests.

In the following, the performance of the algorithm will be
evaluated.

IV. EXPERIMENTAL RESULTS

In order to evaluate the accuracy of the proposed classi-
fier, we selected a training set of 12 video sequences that
were coded using a generic hybrid transform-based motion-
compensated video codec. In this approach, the adopted
transform is a 4 × 4 integer DCT defined in the standard
H.264/AVC. The quantizers have been inherited from the same
standard as well. As for the adopted SVM implementation, we
adopted the SVMlight software [12] designed by T. Joachims.

At compression stage n, the quantization parameter QPn

was sampled from a random variable uniformly distributed in
the interval [QPr − 10, QPr + 10], where QPr is the average
quantization parameter for the sequence.

This assumption is reasonable, since strong variations in
QP across the different compression stages would lead to
severe quality degradation that would make the resulting video

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False positive

T
ru

e
 p

o
si

tiv
e

T

1

w
2,3

(a)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False positive

T
ru

e
 p

o
si

tiv
e

T
1

w
2,3

(b)

Fig. 7. ROC curves comparing T1 vs. w2,3. a) Results on training set b)
Results on test set.

sequence useless. Moreover, we also imposed that the QPs
between two consecutive compression stages must differ by
at least 2 units since small variations in quantization could be
perfectly transparent to the final resulting signal. In the training
phase we adopted 14 different realizations of QP chains for
the compression of each sequence.

Table II reports the confusion matrix obtained with the
proposed method. It is possible to notice that the case of a
single compression stage is always correctly identified. Thus,
in the case a sequence was compressed once, the proposed
method performs very well. As a matter of fact, the proposed
approach works well in detecting double compression since
it is very accurate in determining whether a video has been
coded once or more.

The effectiveness of the approach changes whenever the
number of compression is N > 1. In this case, with respect
to the still images one, discriminating multiple compression
is much harder due to motion estimation which scrambles
the statistics of coefficients. As a matter of fact, sequences
coded twice are not easily distinguishable from those coded
three times, and therefore, identifying N proves to be more
difficult. However, the proposed approach permits obtaining
an accuracy higher than 73%, which compares well with
respect to other double compression approaches (e.g., for the
approach [8], accuracy is around 70%). Similar conclusions
can be drawn considering other double compression detection
methods which reaches an accuracy around 92 %.

It is also possible to evaluate the robustness of combining
different classifiers together. In Fig. 7, we report the ROC
curves that compares the performance of the parameter T1

with respect to the single parameter w2,3 (which follows the
classification operated in [8] or in [13]). It is possible to notice
that although the performance of w2,3 is optimal on the trainig
set (where it has been optimized by the SVM learning routine),
its performances dramatically fall when applied to test data.
The parameter T1 limits the accuracy decrement and permit
improving both accuracy and recall.

Therefore, it is possible to conclude that the proposed
solution works very well as a double compression detector
and, moreover, permits revealing the eventuality that some
additional compression has been operated previously.

Paolo Bestagini

Which codec has been used to encode a
double-compressed video?

!15

[Bestagini et al. ICASSP 2012]
[Bestagini et al. EUVIP 2013]
[Bestagini et al. TIP 2016]

Paolo Bestagini

Coding-based footprints: codec identification

• Idempotency property:
• if we re-quantize an already quantized signal with the same

quantization step, the signal does not change

• This is partly true also for video codecs

!16

+ +

-

X X̂1Y Ŷ
T T−1Q

ME

MCP

Fig. 1: Simplified block diagram of a conventional video coder. T is
the orthonormal transform, Q is the quantizer, ME performs motion
estimation, MC performs motion compensation, and P computes
the prediction for intra-coded frames.

concept of idempotency property, based on the idea of [11]. Section
4 shows how eigen-algorithms work improving idempotency-based
techniques. Finally, Section 5 and 6 present the results and conclude
the paper respectively.

2. BACKGROUND

Nowadays, video codecs share a quite standard scheme that can
be described by means of a chain of basic operations. The typical
scheme is shown as block diagram in Figure 1.

The encoder first split the video sequence X into frames, and
each frame is divided into blocks x. Frames are categorized into
intra and inter-coded ones. Intra-coded frames may be optionally
subtracted to a prediction generated by P exploiting spatial correla-
tion. Inter-coded frames are typically subtracted to a prediction com-
puted exploiting temporal correlation with neighboring frames. To
this purpose ME performs Motion Estimation (ME) and computes
Motion Vectors (MVs), while MC performs the motion compensa-
tion. The so obtained residual (or the block itself if prediction is
not used) is then transformed by means of an orthonormal transform
T (i.e., DCT, wavelet, etc.). Transform coefficients y are quantized
by Q obtaining ŷ. The bitstream is then generated after an entropy
coding step. Since entropy coding is perfectly invertible, it does not
leave any footprint on the sequence, and therefore it is here omitted.

The decoder reads the bitstream and inverts the operations made
by the encoder. Decoded blocks x̂1 are obtained applying the inverse
transform T−1 to ŷ, and adding back the prediction (if needed). It is
worth noticing that because of working with a finite integer arith-
metics, a rounding operation is applied too. However, the effect
of quantization is far more pronounced than that of the arithmetic
rounding, therefore this step is not considered here.

Among the above operations, the non-invertible ones leave char-
acteristic footprints on the sequence. These footprints act as a sig-
nature of the used codec. For this reason, by studying them, it is
possible to blindly infer the used codec. In particular, the most char-
acteristic operations are: i) quantization; ii) and motion estimation.
As it regards the former, each coding standard usually defines a finite
set of possible quantization steps that are indirectly selected adjust-
ing an integer-valued Quantization Parameter (QP). Regarding the
latter, ME strategy may be characteristic of a particular vendor, e.g.,
because of specific hardware-optimized implementation for camera
chip-sets. Coding standards then typically differ in the way these
operations are performed, even when they share the same underly-
ing coding architecture. Hence, footprints left by quantization and
motion estimation processes represent a distinctive element.

Processing
Unit�1

Processing
Unit�2

Processing
Units
Set

Unknown Analysis

X X̂1 X̂2

Fig. 2: Processing and analysis chain using idempotency property.

3. IDEMPOTENCY

An operator is idempotent if reiterating its execution does not al-
ter the output of the first iteration. In practical multimedia foren-

sics cases, the output of the i-th iteration (X̂i) is highly correlated

with the output of the first one (X̂1). A conceptual illustration of
idempotency-based identification schemes is presented in Figure 2.

Let X̂1 denote the available data under analysis, which is the result
of processing X with the unknown Processing Unit 1. The analyst
has available a set of processing units. For each of them, he gen-

erates the output data X̂2 by means of the Processing Unit 2, and

measures the correlation between X̂1 and X̂2. The processing unit
that leads to the highest measure of correlation is identified as the

one used to output the observed data X̂1.

3.1. Quantizers

An example of a simple operator subject to the idempotency prop-
erty is the quantizer. Let us consider that X is the signal before the
quantization. We can quantize it obtaining

X̂1 = Q∆1
(X) = ∆1

⌊

X

∆1

⌋

, (1)

where ∆1 denotes the quantization step used, and the pedex i is used

to denote the i-th quantization iteration. If we re-quantize X̂1 with
the same quantization step ∆2 = ∆1, we obtain

X̂2 = Q∆2
(X̂1) = ∆1

⎢

⎢

⎢

⎣

∆1

⌊

X

∆1

⌋

∆1

⎥

⎥

⎥

⎦ = X̂1. (2)

This means that if we re-quantize a signal with the same quantization
step, we obtain the same signal. We can then iterate the quantization
step, without affecting the signal itself after first quantization. A pos-
sible algorithm to detect the quantization step ∆1 used to quantize

X̂1 (with Unit 1) exploiting the idempotency principle is the follow-
ing:

• Select a value ∆k from the set C of possible ∆1 candidates.

• Re-quantize X̂1 with step ∆k (with Unit 2) and compute the

input-output distance as Ck =
∑

(X̂1 −Q∆k
(X̂1))2, where

the sum is operated on all the samples of the signal.

• The estimation of ∆1 (or one of its sub-multiple) is selected
as ∆∗

1 = argmin∆k
Ck.

It is clear even from this simple example, that if the set of tested ∆k

does not include ∆1, the detector is bound to fail.

+ +

-

X X̂1Y Ŷ
T T−1Q

ME

MCP

Fig. 1: Simplified block diagram of a conventional video coder. T is
the orthonormal transform, Q is the quantizer, ME performs motion
estimation, MC performs motion compensation, and P computes
the prediction for intra-coded frames.

concept of idempotency property, based on the idea of [11]. Section
4 shows how eigen-algorithms work improving idempotency-based
techniques. Finally, Section 5 and 6 present the results and conclude
the paper respectively.

2. BACKGROUND

Nowadays, video codecs share a quite standard scheme that can
be described by means of a chain of basic operations. The typical
scheme is shown as block diagram in Figure 1.

The encoder first split the video sequence X into frames, and
each frame is divided into blocks x. Frames are categorized into
intra and inter-coded ones. Intra-coded frames may be optionally
subtracted to a prediction generated by P exploiting spatial correla-
tion. Inter-coded frames are typically subtracted to a prediction com-
puted exploiting temporal correlation with neighboring frames. To
this purpose ME performs Motion Estimation (ME) and computes
Motion Vectors (MVs), while MC performs the motion compensa-
tion. The so obtained residual (or the block itself if prediction is
not used) is then transformed by means of an orthonormal transform
T (i.e., DCT, wavelet, etc.). Transform coefficients y are quantized
by Q obtaining ŷ. The bitstream is then generated after an entropy
coding step. Since entropy coding is perfectly invertible, it does not
leave any footprint on the sequence, and therefore it is here omitted.

The decoder reads the bitstream and inverts the operations made
by the encoder. Decoded blocks x̂1 are obtained applying the inverse
transform T−1 to ŷ, and adding back the prediction (if needed). It is
worth noticing that because of working with a finite integer arith-
metics, a rounding operation is applied too. However, the effect
of quantization is far more pronounced than that of the arithmetic
rounding, therefore this step is not considered here.

Among the above operations, the non-invertible ones leave char-
acteristic footprints on the sequence. These footprints act as a sig-
nature of the used codec. For this reason, by studying them, it is
possible to blindly infer the used codec. In particular, the most char-
acteristic operations are: i) quantization; ii) and motion estimation.
As it regards the former, each coding standard usually defines a finite
set of possible quantization steps that are indirectly selected adjust-
ing an integer-valued Quantization Parameter (QP). Regarding the
latter, ME strategy may be characteristic of a particular vendor, e.g.,
because of specific hardware-optimized implementation for camera
chip-sets. Coding standards then typically differ in the way these
operations are performed, even when they share the same underly-
ing coding architecture. Hence, footprints left by quantization and
motion estimation processes represent a distinctive element.

Processing
Unit�1

Processing
Unit�2

Processing
Units
Set

Unknown Analysis

X X̂1 X̂2

Fig. 2: Processing and analysis chain using idempotency property.

3. IDEMPOTENCY

An operator is idempotent if reiterating its execution does not al-
ter the output of the first iteration. In practical multimedia foren-

sics cases, the output of the i-th iteration (X̂i) is highly correlated

with the output of the first one (X̂1). A conceptual illustration of
idempotency-based identification schemes is presented in Figure 2.

Let X̂1 denote the available data under analysis, which is the result
of processing X with the unknown Processing Unit 1. The analyst
has available a set of processing units. For each of them, he gen-

erates the output data X̂2 by means of the Processing Unit 2, and

measures the correlation between X̂1 and X̂2. The processing unit
that leads to the highest measure of correlation is identified as the

one used to output the observed data X̂1.

3.1. Quantizers

An example of a simple operator subject to the idempotency prop-
erty is the quantizer. Let us consider that X is the signal before the
quantization. We can quantize it obtaining

X̂1 = Q∆1
(X) = ∆1

⌊

X

∆1

⌋

, (1)

where ∆1 denotes the quantization step used, and the pedex i is used

to denote the i-th quantization iteration. If we re-quantize X̂1 with
the same quantization step ∆2 = ∆1, we obtain

X̂2 = Q∆2
(X̂1) = ∆1

⎢

⎢

⎢

⎣

∆1

⌊

X

∆1

⌋

∆1

⎥

⎥

⎥

⎦ = X̂1. (2)

This means that if we re-quantize a signal with the same quantization
step, we obtain the same signal. We can then iterate the quantization
step, without affecting the signal itself after first quantization. A pos-
sible algorithm to detect the quantization step ∆1 used to quantize

X̂1 (with Unit 1) exploiting the idempotency principle is the follow-
ing:

• Select a value ∆k from the set C of possible ∆1 candidates.

• Re-quantize X̂1 with step ∆k (with Unit 2) and compute the

input-output distance as Ck =
∑

(X̂1 −Q∆k
(X̂1))2, where

the sum is operated on all the samples of the signal.

• The estimation of ∆1 (or one of its sub-multiple) is selected
as ∆∗

1 = argmin∆k
Ck.

It is clear even from this simple example, that if the set of tested ∆k

does not include ∆1, the detector is bound to fail.

Codec 1 Codec 1
X̂2 ' X̂1X X̂1

Paolo Bestagini

!17

X
Codec 1

X̂1 Codec 1

X̂2 ≅ X̂1X
Codec 1

X̂1 Codec 2 Codec 1
X̂3≅ X̂1≅ X̂2

X̂2 ≅ X̂1

Coding-based footprints: codec identification

• Main idea:

SMALL
NOISE

Paolo Bestagini

!17

X
Codec 1

X̂1 Codec 1

X̂2 ≅ X̂1X
Codec 1

X̂1 Codec 2 Codec 1
X̂3≅ X̂1≅ X̂2

X̂2 ≅ X̂1

Coding-based footprints: codec identification

• Main idea:

Paolo Bestagini

!17

X
Codec 1

X̂1 Codec 1

X̂2 ≅ X̂1X
Codec 1

X̂1 Codec 2 Codec 1
X̂3≅ X̂1≅ X̂2

X̂2 ≅ X̂1

Coding-based footprints: codec identification

• Main idea:

X̂2 ≅ X̂1X
Codec 1

X̂1 Codec 2 Codec 3
X̂3≅ X̂2

Controlled
Parameters

unknown known

• Approach:

Paolo Bestagini - DEIB

PSNR(X̂2, X̂3)

X̂2 ' X̂1

X X̂1

X̂3

Coding-based footprints: codec identification

MPEG2 AVC

MPEG2

MPEG4

AVC

Parameters:
GOP only Intra
QP QPmin:QPmax

Frame number

QP

Frame number

QP

Frame number

QP

!18

Paolo Bestagini - DEIB

Coding-based footprints: codec identification

Correct

Incorrect

!18

Paolo Bestagini - DEIB

Coding-based footprints: codec identification

Correct

Incorrect

!18

Local
Maxima

Paolo Bestagini

Coding-based footprints: codec identification

• Results:

!19

10

TABLE V: Confusion matrix for c1 identification with different masking c2. Bold is used to denote the elements on the diagonal, i.e.,
elements that should be equal to one in the best scenario.

ĉ1
MPEG-2 MPEG-4 AVC DIRAC

c
1

MPEG-2 0.94 0.96 0.96 0.05 0.04 0.03 0 0 0.01 0.01 0 0
MPEG-4 (a) 0 0 0.04 0.93 0.92 0.76 0.02 0.02 0.2 0.06 0.06 0
MPEG-4 (b) 0.02 0.02 0.06 0.87 0.87 0.69 0.06 0.05 0.25 0.06 0.06 0

AVC (a) 0.01 0 0 0.14 0.24 0.06 0.79 0.68 0.94 0.06 0.08 0
AVC (b) 0 0.01 0 0.13 0.2 0.05 0.81 0.69 0.94 0.06 0.09 0.01
AVC (c) 0.06 0.06 0.15 0 0.03 0 0.92 0.87 0.81 0.02 0.05 0.04
DIRAC 0 0.02 0 0.09 0.12 0.01 0.13 0.12 0.21 0.78 0.74 0.78

MPEG-2 MPEG-4 AVC MPEG-2 MPEG-4 AVC MPEG-2 MPEG-4 AVC MPEG-2 MPEG-4 AVC
c2

Fig. 9: GOP detection ROC curves for different values of G1.

peakness value associated to an estimated GOP (18). In other
words, we computed the Receiver Operating Characteristic
(ROC) curve by thresholding peakness values associated to
estimated GOPs. We evaluate as True Positives (TP) the
correctly estimated GOPs whose associated peakness is above
the threshold, and False Positives (FP) the wrongly estimated
GOPs whose associated peakness is above the threshold.
Figure 9 shows the ROC curves computed on the same
dataset used for the previous experiments, analyzing separately
sequences with different G1 values. Also this experiment
confirms that the lower the G1 value, the easiest is to correctly
detect the GOP, as already shown in Table II. Moreover this
proves that we can detect with a given probability whether the
GOP estimate is to be considered valid or not.

Codec Identification
To analyze the performance of the codec identification

algorithm, we consider all the combinations of parameters
reported in Table I, fixing the GOP size G1 = 14. The dataset
is then composed by 2268 sequences (i.e., six sequences, seven
c1, three R1, one G1, three c2, six QP2 and one G2). Since
we focus on codec identification, we assume G1 to be known.

Table V shows the codec identification confusion matrix as
a function of the masking codec c2. The identification method
is operated at sequence level by aggregating the observations
extracted from all detected intra-coded frames as explained in
(21). These results are averaged across all tested sequences.
It is interesting to notice that, as highlighted also in the GOP
identification procedure, AVC and DIRAC are well masked
by MPEG-2 and MPEG-4. Instead, when the masking (c2)
and the masked (c1) codecs share the same architecture,
identification accuracy is increased.

TABLE VI: Codec identification accuracy for different sequences, c2

and QP2. Bold is used for values larger than 0.8

(a) c2 = MPEG-2

QP2
a b c d e f

se
q

Foreman 1.00 0.95 0.90 0.90 0.81 0.67
Mobile 1.00 1.00 0.81 0.71 0.57 0.62
News 1.00 1.00 0.90 0.90 0.86 0.76
Paris 1.00 1.00 1.00 0.90 0.86 0.76
Ice 0.90 0.90 0.90 0.90 0.86 0.67
Harbour 0.90 0.86 0.90 0.86 0.81 0.67

(b) c2 = MPEG-4

QP2
a b c d e f

se
q

Foreman 0.95 0.90 0.90 0.90 0.81 0.52
Mobile 1.00 0.90 0.62 0.57 0.71 0.62
News 1.00 0.95 0.90 0.86 0.76 0.62
Paris 1.00 1.00 0.95 0.90 0.90 0.71
Ice 0.90 0.90 0.86 0.81 0.76 0.52
Harbour 0.90 0.81 0.90 0.86 0.71 0.52

(c) c2 = AVC

QP2
a b c d e f

se
q

Foreman 1.00 1.00 1.00 0.95 0.90 0.81
Mobile 1.00 1.00 0.95 0.76 0.62 0.57
News 1.00 0.95 0.90 0.90 0.81 0.86
Paris 1.00 1.00 1.00 0.90 0.90 0.81
Ice 0.90 0.86 0.76 0.67 0.62 0.67
Harbour 0.90 0.86 0.86 0.67 0.48 0.43

In order to analyze the masking effect further, Table VI
shows the codec identification accuracy obtained for different
c2 and QP2 values. In nearly lossless conditions (low QP2)
the proposed method successfully identifies the first codec in
almost all cases. Notice that the influence of lossy compression
on the effectiveness of the proposed identification algorithm
is content-dependent. Indeed, for Foreman, News or Paris,
accuracy is large also for high QP2 values, whereas for
Harbour the method is prone to fail when QP2 is moderately
increased.

A further test that we performed was to study the codec
estimation accuracy for different values of R. To this pur-
pose, Table VII shows the accuracy for different c2 and R,
averaging results over the other parameters. Unlike in the
GOP estimation case, codec estimation accuracy increases
when the original sequence is encoded at medium quality (i.e.,
R = RM). This is due to the fact that, at medium quality, traces
left by c1 are stronger than for R = RH and the sequence

Paolo Bestagini

Are codec and quality coherent in time?

!20

[Verde et al. ICIP 2018]

Paolo Bestagini

Coding-based footprints: temporal coherence

Problem
• Given a decoded video sequence, detect whether it is a compilation

from multiple video shots.

Assumptions
• Shots are seldom originally encoded with the exact same codec or

parameters due to different sources and used software.

!21

Paolo Bestagini

Coding-based footprints: temporal coherence

Main Pipeline
• Compute a frame-wise indicator of the used codec
• Compute a frame-wise indicator of the video quality
• Check inconsistency of these indicators frame-by-frame

Codec
Features

Quality
Features

Temporal
Inonsistency
Analysis

• Spliced? Y/N
• Splicing point

!22

Paolo Bestagini

Coding-based footprints: temporal coherence

Feature Extraction

Codec Features
• A CNN is trained to classifiy 4 different codecs (MPEG2, MPEG4,

H264, H265)
• Feature vector is

Quality Features
• A CNN is trained to classifiy 4 different qualities (H264 with QP=5,

10, 15, 20)
• Feature vector is

in terms of video sequences, resolutions, and codec implementa-
tions.

2. PROBLEM FORMULATION

Let us denote with X = [X(0),X(1), ...,X(N � 1)] a video se-
quence composed by N frames X(n). Two video sequences Xi

and Xj can be concatenated in time obtaining the spliced video
Xi,j = [Xi,Xj] = [Xi(0), ...,Xi(Ni � 1),Xj(0), ...,Xj(Nj �
1)]. The video compilation Xi,j is characterized by a splicing point
at frame number n = Ni � 1, meaning that frames Xi,j(Ni � 1)

and Xi,j(Ni) originally belong to two different video shots (i.e., Xi

and Xj , respectively).
In this work we propose a solution to the video splicing detec-

tion problem. This consists in detecting whether a generic video
sequence under analysis is a composition of at least two shots (i.e.,
as Xi,j), or it is a single original video (i.e., as Xi or Xj), based
only on pixel level analysis (i.e., not exploiting the bitstream or addi-
tional metadata). Moreover, we propose a solution to video splicing
localization problem. This means being able to correctly identify the
splicing point (i.e., the frame at which the splicing begins) in a video
composition (i.e., frame at position n = Ni � 1 as the splicing point
of Xi,j).

Without loss of generality, in this work we consider spliced
videos composed by only two shots (since it can be easily extended
iterating the procedure). Additionally, we consider the case of com-
pilations obtained by splicing shots encoded with different codecs
and/or different quality parameters. This is the case of video compi-
lations obtained with shots coming from different devices, different
broadcasting sources, downloaded from different social media, as
well as shots compressed several times due to post-processing op-
erations (i.e., multiple compression can decrease quality). As, in
a real-world case, videos are typically encoded again after splicing
(i.e., videos are not distributed in raw format), we consider that all
spliced videos are re-encoded.

3. PROPOSED SYSTEM

Given a video X under analysis, the proposed system for video splic-
ing detection and localization can be synthesized by the following
passages:

• A CNN trained to identify codec-related information extracts
a feature vector fC(n) from each frame X(n).

• A CNN trained to infer the compression quality level extracts
a feature vector fQ(n) from each frame X(n).

• Features fC(n) and fQ(n) are concatenated into the vector
fCQ(n) for each frame.

• Inconsistencies between adjacent feature vectors fCQ(n) and
fCQ(n+ 1) are exploited to detect and localize splicing.

In the following, we report a detailed description of each step.

Video Codec CNN. Each video frame X(n) is split into non-
overlapping 64 ⇥ 64 color patches Xp

(n), p 2 [0, P � 1], where
the number of patches P is bound by video resolution. Each patch
is fed to a CNN tailored to solve a four-class classification problem:,
i.e., detecting whether each patch comes from a video encoded using
MPEG2, MPEG4, H264, or H265. Concerning the adopted network
architecture, we empirically noticed a benefit in using a fully convo-
lutional approach. To this purpose we replaced pooling layers with
convolutional layers with stride 2 (i.e., filters are convolved moving
them of two pixels per direction every time, resulting in a factor 2

downsampling). Specifically, the adopted CNN structure is the fol-
lowing one:

• Two convolutional layers with 32 filters of size 5 and stride 1.
• One convolutional layer with 32 filters of size 2 and stride 2

followed by SELU activation.
• Two convolutional layers with 48 filters of size 4 and stride 1.
• One convolutional layer with 48 filters of size 2 and stride 2

followed by SELU activation.
• Two convolutional layers with 64 filters of size 4 and stride 1.
• One convolutional layer with 64 filters of size 2 and stride 2

followed by SELU activation.
• One convolutional layer with 128 filters of size 3 and stride 1.
• One fully connected layer with 128 output neurons, followed

by SELU activation.
• One fully connected layer with 4 output neurons, followed by

Softmax activation.
The amount of trainable parameters is 325.140, thus making the net-
work deep (i.e., 12 layers) but fast to train and deploy.

For each patch Xp
(n), the network’s output is a four-element

feature vector

fpC (n) = [fp
H264(n), f

p
H265(n), f

p
MPEG2(n), f

p
MPEG4(n)], (1)

where each element represents the likelihood of the p-th patch from
the n-th frame being encoded with one of the four considered codecs.
Notice that, due to final Softmax activation, features vectors are non-
negative and sum to one, thus being naturally normalized. The fi-
nal frame-level codec feature vector fC(n) is obtained by averaging
patches’ feature vectors as

fC(n) =
1

P

P�1X

p=0

fpC (n), (2)

where all operations are performed in an element-wise fashion. This
feature vector can be interpreted in different ways. On the one hand,
we can consider each element as the likelihood of frame X(n) being
encoded with a given codec in the set of considered four ones. On
the other hand, we can simply interpret the distribution of the four
likelihoods fH264(n), fH265(n), fMPEG2(n) and fMPEG4(n) as a gen-
eral descriptor capturing codec traces. Indeed, for splicing detection
and localization, we are not required to exactly detect the used codec
for each frame, but we are more interested in observing some sort of
codec incoherency over time.

Video Quality CNN. As for the previous step, each video frame
X(n) is split into non-overlapping 64 ⇥ 64 color patches Xp

(n).
Each patch is additionally processed using the denosing algorithm
presented in [21] to extract patch noises Wp

(n). Noises are fed
to a CNN trained to solve a four-class classification problem, i.e.
to detect whether the patch comes from a frame encoded with low
(low), medium-low (m-low), medium-high (m-high) or high (high)
quality. In this case, we resorted to a more standard architecture
similar to the one proposed in [22]:

• One convolutional layer with 32 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 64 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

(a) Pristine

(b) Composition
Fig. 1. Feature vector for each frame of a pristine video (a) and
a video composition (b). Composition codec changes after 100
frames.

• One convolutional layer with 96 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One fully connected layer with 128 output neurons, followed
by Dropout with probability 0.5.

• One fully connected layer with 4 output neurons, followed by
Softmax activation.

For each patch noise Wp
(n), the network’s output is a four-

element feature vector

fpQ(n) = [fp
low(n), f

p
m-low(n), f

p
m-high(n), f

p
high(n)], (3)

where each element represents the likelihood of the patch coming
from a frame encoded with different quality in a set of four possible
choices. Also in this case, we obtain the final frame descriptor fQ(n)
by averaging feature vectors coming from all the patches extracted
from the same frame

fQ(n) =
1

P

P�1X

p=0

fpQ(n), (4)

where all operations are performed element-wise. In our scenario,
we can interpret this feature vector as a compact descriptor of frame
coding quality. Due to Softmax normalization, also this feature vec-
tor is bound to be non-negative and all elements sum to one.

Splicing Detection and Localization. After feature vectors
fC(n) and fQ(n) are extracted from a frame, we concatenate them
into a single eight-element feature vector fCQ(n) = [fC(n), fQ(n)].
Fig. 1a shows an example of fCQ(n) for a video composed by 200
original frames encoded with high-quality MPEG2, whereas Fig. 1b
shows an example of video composed by 100 frames encoded with
high-quality H264 spliced with 100 frames encoded with high-
quality MPEG4. In the second example, it is possible to observe an
evident feature vector inconsistency at frame number 100.

To automatically detect this inconsistency, thus detect splicing,
our method works as follows. We compute the mean squared error

(a) Pristine

(b) Composition
Fig. 2. MSE between adjacent feature vectors for a pristine video (a)
and a video composition (b). Composition codec changes after 100
frames as denoted by the star. Videos are the same used for Fig. 1.

(MSE) between feature vectors belonging to adjacent frames

�fCQ(n) = MSE(fCQ(n), fCQ(n+ 1)). (5)

We then compare the maximum value of �fCQ(n) with a threshold
�. If max(�fCQ(n)) > �, then the video is detected as spliced.
In this case, the maximum �fCQ(n) position represents the splicing
point

n̂ = argmax

n
(�fCQ(n)). (6)

Fig. 2 shows �fCQ(n) referred to videos used for the example in
Fig. 1 on a log-scale. It is possible to observe that, in case of splicing
(i.e., Fig. 2b), the splicing point becomes evident.

4. SIMULATIONS AND RESULTS

In this section we report all the details about the performed simula-
tions in terms of dataset generation and training protocols. Then we
report all the achieved results, separately evaluating each step of the
proposed method.

Datasets. In order to train the two different CNNs and test the
whole system, we prepared different datasets by compressing a set
of diverse training sequences with different coding set-up, frame res-
olutions, and codec types 1. This is essential to prove CNN general-
ization capability and evaluate the whole pipeline.

To train the video codec CNN, we built dataset DHR
train composed

by 300 videos at high resolution. We started from five uncompressed
video sequences, namely: ducks take off (720p), stockholm (720p),
ice (4CIF), harbour (4CIF), parkrun (720p). Each sequence has
been encoded using FFmpeg to obtain 60 different versions com-
bining codecs and qualities. As codecs we considered MPEG2,
MPEG4, H264, H265. As quality, we considered: fixed quantization
parameter (QP) ranging from 1 to 10; constant bitrate set to 2 Mb/s,
4 Mb/s and 6 Mb/s; variable bitrate set to 2 Mb/s, 4 Mb/s and 6

Mb/s. As group of pictures (GOP) we used 30 frames.
To validate the video codec CNN (i.e., select the trained CNN

model), we built dataset DHR
val composed by 300 videos at high reso-

lution. This is obtained following the same procedure of DHR
train, start-

ing from other original sequences: park joy (720p), parkrun (720p),
shields (720p), soccer (4CIF), and stockholm (720p).

To test the video codec CNN on a completely unrelated set,
we built dataset DLR

test composed by 1.672 videos at low resolution

1Original videos at: https://media.xiph.org/video/derf/

!23

Paolo Bestagini

Coding-based footprints: temporal coherence

Temporal inconsistency analysis

Feature Merge
• Feature vectors are concatenated into a single one

Time Analysis
• Compute MSE between feature pairs

Threshold MSE

(a) Pristine

(b) Composition
Fig. 1. Feature vector for each frame of a pristine video (a) and
a video composition (b). Composition codec changes after 100
frames.

• One convolutional layer with 96 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One fully connected layer with 128 output neurons, followed
by Dropout with probability 0.5.

• One fully connected layer with 4 output neurons, followed by
Softmax activation.

For each patch noise Wp
(n), the network’s output is a four-

element feature vector

fpQ(n) = [fp
low(n), f

p
m-low(n), f

p
m-high(n), f

p
high(n)], (3)

where each element represents the likelihood of the patch coming
from a frame encoded with different quality in a set of four possible
choices. Also in this case, we obtain the final frame descriptor fQ(n)
by averaging feature vectors coming from all the patches extracted
from the same frame

fQ(n) =
1

P

P�1X

p=0

fpQ(n), (4)

where all operations are performed element-wise. In our scenario,
we can interpret this feature vector as a compact descriptor of frame
coding quality. Due to Softmax normalization, also this feature vec-
tor is bound to be non-negative and all elements sum to one.

Splicing Detection and Localization. After feature vectors
fC(n) and fQ(n) are extracted from a frame, we concatenate them
into a single eight-element feature vector fCQ(n) = [fC(n), fQ(n)].
Fig. 1a shows an example of fCQ(n) for a video composed by 200
original frames encoded with high-quality MPEG2, whereas Fig. 1b
shows an example of video composed by 100 frames encoded with
high-quality H264 spliced with 100 frames encoded with high-
quality MPEG4. In the second example, it is possible to observe an
evident feature vector inconsistency at frame number 100.

To automatically detect this inconsistency, thus detect splicing,
our method works as follows. We compute the mean squared error

(a) Pristine

(b) Composition
Fig. 2. MSE between adjacent feature vectors for a pristine video (a)
and a video composition (b). Composition codec changes after 100
frames as denoted by the star. Videos are the same used for Fig. 1.

(MSE) between feature vectors belonging to adjacent frames

�fCQ(n) = MSE(fCQ(n), fCQ(n+ 1)). (5)

We then compare the maximum value of �fCQ(n) with a threshold
�. If max(�fCQ(n)) > �, then the video is detected as spliced.
In this case, the maximum �fCQ(n) position represents the splicing
point

n̂ = argmax

n
(�fCQ(n)). (6)

Fig. 2 shows �fCQ(n) referred to videos used for the example in
Fig. 1 on a log-scale. It is possible to observe that, in case of splicing
(i.e., Fig. 2b), the splicing point becomes evident.

4. SIMULATIONS AND RESULTS

In this section we report all the details about the performed simula-
tions in terms of dataset generation and training protocols. Then we
report all the achieved results, separately evaluating each step of the
proposed method.

Datasets. In order to train the two different CNNs and test the
whole system, we prepared different datasets by compressing a set
of diverse training sequences with different coding set-up, frame res-
olutions, and codec types 1. This is essential to prove CNN general-
ization capability and evaluate the whole pipeline.

To train the video codec CNN, we built dataset DHR
train composed

by 300 videos at high resolution. We started from five uncompressed
video sequences, namely: ducks take off (720p), stockholm (720p),
ice (4CIF), harbour (4CIF), parkrun (720p). Each sequence has
been encoded using FFmpeg to obtain 60 different versions com-
bining codecs and qualities. As codecs we considered MPEG2,
MPEG4, H264, H265. As quality, we considered: fixed quantization
parameter (QP) ranging from 1 to 10; constant bitrate set to 2 Mb/s,
4 Mb/s and 6 Mb/s; variable bitrate set to 2 Mb/s, 4 Mb/s and 6

Mb/s. As group of pictures (GOP) we used 30 frames.
To validate the video codec CNN (i.e., select the trained CNN

model), we built dataset DHR
val composed by 300 videos at high reso-

lution. This is obtained following the same procedure of DHR
train, start-

ing from other original sequences: park joy (720p), parkrun (720p),
shields (720p), soccer (4CIF), and stockholm (720p).

To test the video codec CNN on a completely unrelated set,
we built dataset DLR

test composed by 1.672 videos at low resolution

1Original videos at: https://media.xiph.org/video/derf/

(a) Pristine

(b) Composition
Fig. 1. Feature vector for each frame of a pristine video (a) and
a video composition (b). Composition codec changes after 100
frames.

• One convolutional layer with 96 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One fully connected layer with 128 output neurons, followed
by Dropout with probability 0.5.

• One fully connected layer with 4 output neurons, followed by
Softmax activation.

For each patch noise Wp
(n), the network’s output is a four-

element feature vector

fpQ(n) = [fp
low(n), f

p
m-low(n), f

p
m-high(n), f

p
high(n)], (3)

where each element represents the likelihood of the patch coming
from a frame encoded with different quality in a set of four possible
choices. Also in this case, we obtain the final frame descriptor fQ(n)
by averaging feature vectors coming from all the patches extracted
from the same frame

fQ(n) =
1

P

P�1X

p=0

fpQ(n), (4)

where all operations are performed element-wise. In our scenario,
we can interpret this feature vector as a compact descriptor of frame
coding quality. Due to Softmax normalization, also this feature vec-
tor is bound to be non-negative and all elements sum to one.

Splicing Detection and Localization. After feature vectors
fC(n) and fQ(n) are extracted from a frame, we concatenate them
into a single eight-element feature vector fCQ(n) = [fC(n), fQ(n)].
Fig. 1a shows an example of fCQ(n) for a video composed by 200
original frames encoded with high-quality MPEG2, whereas Fig. 1b
shows an example of video composed by 100 frames encoded with
high-quality H264 spliced with 100 frames encoded with high-
quality MPEG4. In the second example, it is possible to observe an
evident feature vector inconsistency at frame number 100.

To automatically detect this inconsistency, thus detect splicing,
our method works as follows. We compute the mean squared error

(a) Pristine

(b) Composition
Fig. 2. MSE between adjacent feature vectors for a pristine video (a)
and a video composition (b). Composition codec changes after 100
frames as denoted by the star. Videos are the same used for Fig. 1.

(MSE) between feature vectors belonging to adjacent frames

�fCQ(n) = MSE(fCQ(n), fCQ(n+ 1)). (5)

We then compare the maximum value of �fCQ(n) with a threshold
�. If max(�fCQ(n)) > �, then the video is detected as spliced.
In this case, the maximum �fCQ(n) position represents the splicing
point

n̂ = argmax

n
(�fCQ(n)). (6)

Fig. 2 shows �fCQ(n) referred to videos used for the example in
Fig. 1 on a log-scale. It is possible to observe that, in case of splicing
(i.e., Fig. 2b), the splicing point becomes evident.

4. SIMULATIONS AND RESULTS

In this section we report all the details about the performed simula-
tions in terms of dataset generation and training protocols. Then we
report all the achieved results, separately evaluating each step of the
proposed method.

Datasets. In order to train the two different CNNs and test the
whole system, we prepared different datasets by compressing a set
of diverse training sequences with different coding set-up, frame res-
olutions, and codec types 1. This is essential to prove CNN general-
ization capability and evaluate the whole pipeline.

To train the video codec CNN, we built dataset DHR
train composed

by 300 videos at high resolution. We started from five uncompressed
video sequences, namely: ducks take off (720p), stockholm (720p),
ice (4CIF), harbour (4CIF), parkrun (720p). Each sequence has
been encoded using FFmpeg to obtain 60 different versions com-
bining codecs and qualities. As codecs we considered MPEG2,
MPEG4, H264, H265. As quality, we considered: fixed quantization
parameter (QP) ranging from 1 to 10; constant bitrate set to 2 Mb/s,
4 Mb/s and 6 Mb/s; variable bitrate set to 2 Mb/s, 4 Mb/s and 6

Mb/s. As group of pictures (GOP) we used 30 frames.
To validate the video codec CNN (i.e., select the trained CNN

model), we built dataset DHR
val composed by 300 videos at high reso-

lution. This is obtained following the same procedure of DHR
train, start-

ing from other original sequences: park joy (720p), parkrun (720p),
shields (720p), soccer (4CIF), and stockholm (720p).

To test the video codec CNN on a completely unrelated set,
we built dataset DLR

test composed by 1.672 videos at low resolution

1Original videos at: https://media.xiph.org/video/derf/

!24

(a) Pristine

(b) Composition
Fig. 1. Feature vector for each frame of a pristine video (a) and
a video composition (b). Composition codec changes after 100
frames.

• One convolutional layer with 96 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One fully connected layer with 128 output neurons, followed
by Dropout with probability 0.5.

• One fully connected layer with 4 output neurons, followed by
Softmax activation.

For each patch noise Wp
(n), the network’s output is a four-

element feature vector

fpQ(n) = [fp
low(n), f

p
m-low(n), f

p
m-high(n), f

p
high(n)], (3)

where each element represents the likelihood of the patch coming
from a frame encoded with different quality in a set of four possible
choices. Also in this case, we obtain the final frame descriptor fQ(n)
by averaging feature vectors coming from all the patches extracted
from the same frame

fQ(n) =
1

P

P�1X

p=0

fpQ(n), (4)

where all operations are performed element-wise. In our scenario,
we can interpret this feature vector as a compact descriptor of frame
coding quality. Due to Softmax normalization, also this feature vec-
tor is bound to be non-negative and all elements sum to one.

Splicing Detection and Localization. After feature vectors
fC(n) and fQ(n) are extracted from a frame, we concatenate them
into a single eight-element feature vector fCQ(n) = [fC(n), fQ(n)].
Fig. 1a shows an example of fCQ(n) for a video composed by 200
original frames encoded with high-quality MPEG2, whereas Fig. 1b
shows an example of video composed by 100 frames encoded with
high-quality H264 spliced with 100 frames encoded with high-
quality MPEG4. In the second example, it is possible to observe an
evident feature vector inconsistency at frame number 100.

To automatically detect this inconsistency, thus detect splicing,
our method works as follows. We compute the mean squared error

(a) Pristine

(b) Composition
Fig. 2. MSE between adjacent feature vectors for a pristine video (a)
and a video composition (b). Composition codec changes after 100
frames as denoted by the star. Videos are the same used for Fig. 1.

(MSE) between feature vectors belonging to adjacent frames

�fCQ(n) = MSE(fCQ(n), fCQ(n+ 1)). (5)

We then compare the maximum value of �fCQ(n) with a threshold
�. If max(�fCQ(n)) > �, then the video is detected as spliced.
In this case, the maximum �fCQ(n) position represents the splicing
point

n̂ = argmax

n
(�fCQ(n)). (6)

Fig. 2 shows �fCQ(n) referred to videos used for the example in
Fig. 1 on a log-scale. It is possible to observe that, in case of splicing
(i.e., Fig. 2b), the splicing point becomes evident.

4. SIMULATIONS AND RESULTS

In this section we report all the details about the performed simula-
tions in terms of dataset generation and training protocols. Then we
report all the achieved results, separately evaluating each step of the
proposed method.

Datasets. In order to train the two different CNNs and test the
whole system, we prepared different datasets by compressing a set
of diverse training sequences with different coding set-up, frame res-
olutions, and codec types 1. This is essential to prove CNN general-
ization capability and evaluate the whole pipeline.

To train the video codec CNN, we built dataset DHR
train composed

by 300 videos at high resolution. We started from five uncompressed
video sequences, namely: ducks take off (720p), stockholm (720p),
ice (4CIF), harbour (4CIF), parkrun (720p). Each sequence has
been encoded using FFmpeg to obtain 60 different versions com-
bining codecs and qualities. As codecs we considered MPEG2,
MPEG4, H264, H265. As quality, we considered: fixed quantization
parameter (QP) ranging from 1 to 10; constant bitrate set to 2 Mb/s,
4 Mb/s and 6 Mb/s; variable bitrate set to 2 Mb/s, 4 Mb/s and 6

Mb/s. As group of pictures (GOP) we used 30 frames.
To validate the video codec CNN (i.e., select the trained CNN

model), we built dataset DHR
val composed by 300 videos at high reso-

lution. This is obtained following the same procedure of DHR
train, start-

ing from other original sequences: park joy (720p), parkrun (720p),
shields (720p), soccer (4CIF), and stockholm (720p).

To test the video codec CNN on a completely unrelated set,
we built dataset DLR

test composed by 1.672 videos at low resolution

1Original videos at: https://media.xiph.org/video/derf/

(a) Pristine

(b) Composition
Fig. 1. Feature vector for each frame of a pristine video (a) and
a video composition (b). Composition codec changes after 100
frames.

• One convolutional layer with 96 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One fully connected layer with 128 output neurons, followed
by Dropout with probability 0.5.

• One fully connected layer with 4 output neurons, followed by
Softmax activation.

For each patch noise Wp
(n), the network’s output is a four-

element feature vector

fpQ(n) = [fp
low(n), f

p
m-low(n), f

p
m-high(n), f

p
high(n)], (3)

where each element represents the likelihood of the patch coming
from a frame encoded with different quality in a set of four possible
choices. Also in this case, we obtain the final frame descriptor fQ(n)
by averaging feature vectors coming from all the patches extracted
from the same frame

fQ(n) =
1

P

P�1X

p=0

fpQ(n), (4)

where all operations are performed element-wise. In our scenario,
we can interpret this feature vector as a compact descriptor of frame
coding quality. Due to Softmax normalization, also this feature vec-
tor is bound to be non-negative and all elements sum to one.

Splicing Detection and Localization. After feature vectors
fC(n) and fQ(n) are extracted from a frame, we concatenate them
into a single eight-element feature vector fCQ(n) = [fC(n), fQ(n)].
Fig. 1a shows an example of fCQ(n) for a video composed by 200
original frames encoded with high-quality MPEG2, whereas Fig. 1b
shows an example of video composed by 100 frames encoded with
high-quality H264 spliced with 100 frames encoded with high-
quality MPEG4. In the second example, it is possible to observe an
evident feature vector inconsistency at frame number 100.

To automatically detect this inconsistency, thus detect splicing,
our method works as follows. We compute the mean squared error

(a) Pristine

(b) Composition
Fig. 2. MSE between adjacent feature vectors for a pristine video (a)
and a video composition (b). Composition codec changes after 100
frames as denoted by the star. Videos are the same used for Fig. 1.

(MSE) between feature vectors belonging to adjacent frames

�fCQ(n) = MSE(fCQ(n), fCQ(n+ 1)). (5)

We then compare the maximum value of �fCQ(n) with a threshold
�. If max(�fCQ(n)) > �, then the video is detected as spliced.
In this case, the maximum �fCQ(n) position represents the splicing
point

n̂ = argmax

n
(�fCQ(n)). (6)

Fig. 2 shows �fCQ(n) referred to videos used for the example in
Fig. 1 on a log-scale. It is possible to observe that, in case of splicing
(i.e., Fig. 2b), the splicing point becomes evident.

4. SIMULATIONS AND RESULTS

In this section we report all the details about the performed simula-
tions in terms of dataset generation and training protocols. Then we
report all the achieved results, separately evaluating each step of the
proposed method.

Datasets. In order to train the two different CNNs and test the
whole system, we prepared different datasets by compressing a set
of diverse training sequences with different coding set-up, frame res-
olutions, and codec types 1. This is essential to prove CNN general-
ization capability and evaluate the whole pipeline.

To train the video codec CNN, we built dataset DHR
train composed

by 300 videos at high resolution. We started from five uncompressed
video sequences, namely: ducks take off (720p), stockholm (720p),
ice (4CIF), harbour (4CIF), parkrun (720p). Each sequence has
been encoded using FFmpeg to obtain 60 different versions com-
bining codecs and qualities. As codecs we considered MPEG2,
MPEG4, H264, H265. As quality, we considered: fixed quantization
parameter (QP) ranging from 1 to 10; constant bitrate set to 2 Mb/s,
4 Mb/s and 6 Mb/s; variable bitrate set to 2 Mb/s, 4 Mb/s and 6

Mb/s. As group of pictures (GOP) we used 30 frames.
To validate the video codec CNN (i.e., select the trained CNN

model), we built dataset DHR
val composed by 300 videos at high reso-

lution. This is obtained following the same procedure of DHR
train, start-

ing from other original sequences: park joy (720p), parkrun (720p),
shields (720p), soccer (4CIF), and stockholm (720p).

To test the video codec CNN on a completely unrelated set,
we built dataset DLR

test composed by 1.672 videos at low resolution

1Original videos at: https://media.xiph.org/video/derf/

Paolo Bestagini

Coding-based footprints: temporal coherence

Visual example

(a) Pristine

(b) Composition
Fig. 1. Feature vector for each frame of a pristine video (a) and
a video composition (b). Composition codec changes after 100
frames.

• One convolutional layer with 96 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One fully connected layer with 128 output neurons, followed
by Dropout with probability 0.5.

• One fully connected layer with 4 output neurons, followed by
Softmax activation.

For each patch noise Wp
(n), the network’s output is a four-

element feature vector

fpQ(n) = [fp
low(n), f

p
m-low(n), f

p
m-high(n), f

p
high(n)], (3)

where each element represents the likelihood of the patch coming
from a frame encoded with different quality in a set of four possible
choices. Also in this case, we obtain the final frame descriptor fQ(n)
by averaging feature vectors coming from all the patches extracted
from the same frame

fQ(n) =
1

P

P�1X

p=0

fpQ(n), (4)

where all operations are performed element-wise. In our scenario,
we can interpret this feature vector as a compact descriptor of frame
coding quality. Due to Softmax normalization, also this feature vec-
tor is bound to be non-negative and all elements sum to one.

Splicing Detection and Localization. After feature vectors
fC(n) and fQ(n) are extracted from a frame, we concatenate them
into a single eight-element feature vector fCQ(n) = [fC(n), fQ(n)].
Fig. 1a shows an example of fCQ(n) for a video composed by 200
original frames encoded with high-quality MPEG2, whereas Fig. 1b
shows an example of video composed by 100 frames encoded with
high-quality H264 spliced with 100 frames encoded with high-
quality MPEG4. In the second example, it is possible to observe an
evident feature vector inconsistency at frame number 100.

To automatically detect this inconsistency, thus detect splicing,
our method works as follows. We compute the mean squared error

(a) Pristine

(b) Composition
Fig. 2. MSE between adjacent feature vectors for a pristine video (a)
and a video composition (b). Composition codec changes after 100
frames as denoted by the star. Videos are the same used for Fig. 1.

(MSE) between feature vectors belonging to adjacent frames

�fCQ(n) = MSE(fCQ(n), fCQ(n+ 1)). (5)

We then compare the maximum value of �fCQ(n) with a threshold
�. If max(�fCQ(n)) > �, then the video is detected as spliced.
In this case, the maximum �fCQ(n) position represents the splicing
point

n̂ = argmax

n
(�fCQ(n)). (6)

Fig. 2 shows �fCQ(n) referred to videos used for the example in
Fig. 1 on a log-scale. It is possible to observe that, in case of splicing
(i.e., Fig. 2b), the splicing point becomes evident.

4. SIMULATIONS AND RESULTS

In this section we report all the details about the performed simula-
tions in terms of dataset generation and training protocols. Then we
report all the achieved results, separately evaluating each step of the
proposed method.

Datasets. In order to train the two different CNNs and test the
whole system, we prepared different datasets by compressing a set
of diverse training sequences with different coding set-up, frame res-
olutions, and codec types 1. This is essential to prove CNN general-
ization capability and evaluate the whole pipeline.

To train the video codec CNN, we built dataset DHR
train composed

by 300 videos at high resolution. We started from five uncompressed
video sequences, namely: ducks take off (720p), stockholm (720p),
ice (4CIF), harbour (4CIF), parkrun (720p). Each sequence has
been encoded using FFmpeg to obtain 60 different versions com-
bining codecs and qualities. As codecs we considered MPEG2,
MPEG4, H264, H265. As quality, we considered: fixed quantization
parameter (QP) ranging from 1 to 10; constant bitrate set to 2 Mb/s,
4 Mb/s and 6 Mb/s; variable bitrate set to 2 Mb/s, 4 Mb/s and 6

Mb/s. As group of pictures (GOP) we used 30 frames.
To validate the video codec CNN (i.e., select the trained CNN

model), we built dataset DHR
val composed by 300 videos at high reso-

lution. This is obtained following the same procedure of DHR
train, start-

ing from other original sequences: park joy (720p), parkrun (720p),
shields (720p), soccer (4CIF), and stockholm (720p).

To test the video codec CNN on a completely unrelated set,
we built dataset DLR

test composed by 1.672 videos at low resolution

1Original videos at: https://media.xiph.org/video/derf/

!25

Paolo Bestagini

Coding-based footprints: temporal coherence

Challenging Example

!26

Paolo Bestagini

Coding-based footprints: temporal coherence

Challenging Example

!26

Paolo Bestagini

Coding-based footprints: temporal coherence

Video Codec Identification Results

Video Quality Identification Results

!27

Paolo Bestagini

Coding-based footprints: temporal coherence

Splicing Detection Results

!28

Paolo Bestagini

Analysis on a single video

Coding-based
footprints

Editing-based
footprints

Number of
compressions

Type of
codec

Image
splicing

Paolo Bestagini

Analysis on a single video

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Type of
codec

Image
splicing

Video
copy-paste

Video
copy-move

Re-capture

Paolo Bestagini

Editing-based footprints !30

Paolo Bestagini

Editing-based footprints !30

Paolo Bestagini

Editing-based footprints !31

Paolo Bestagini

Editing-based footprints !31

Paolo Bestagini

Editing-based footprints

OriginalForged

!32

Paolo Bestagini

Editing-based footprints

OriginalForged

!32

Paolo Bestagini

Is the video forged?

!33

[Bestagini et al. ICASSP 2013]
[Bestagini et al. MMSP 2013]

Paolo Bestagini

Editing-based footprints

• Video forgeries can be operated through different kinds of editing
attacks

• We considered:
1. insertion of a still image
2. insertion of a portion of video from the same source
3. insertion of a portion of video from a different source

The main drawback of many state-of-the-art algorithms
lies in the insufficient validation on realistically tampered
videos. Since producing manually forged sequences is time
consuming, results are often presented for synthetically tam-
pered videos (i.e., obtained by automatically copy and pasting
regions in different positions), whose authenticity could be
immediately determined by simple visual inspection. Only in
some cases qualitative results are presented for just a few
(typically 2 or 3) hand-made realistic forged sequences. In
order to address this issue, in [15] the authors have recently
presented a publicly available and open database of realistic
forged sequences. The Surrey University Library for Forensic
Analysis (SULFA) database is still at an early stage. However,
the submission of additional forged video sequences is encour-
aged, and it may become a reference for future algorithms.

The main contribution of this paper is twofold. First, we pro-
pose a blind and automatic algorithm to detect local tampering
in videos, addressing different kinds of attacks. Second, we
contributed to the expansion of the SULFA database presented
in [15] with additional videos, in order to validate our method
on a broader set of realistic sequences and, at the same time,
offer to the scientific community a precious benchmarking
dataset for their future investigations.

The proposed algorithm is able to detect whether a spatio-
temporal region of a sequence (i.e., a block of connected pixels
in the spatio-temporal domain) was replaced by either a series
of fixed images repeated in time, or a portion of the same video
taken from a potentially different time interval. In the first case,
the algorithm detects the attack by analyzing the footprint left
on the residual computed between adjacent frames, and proves
to be robust to mild compression. In the second case, the attack
is detected exploiting a correlation analysis similar to [14].
However, our approach is fully automatic, and the position of
tampered frames is not assumed to be known a-priori.

The rest of the paper is organized as follows. Section II il-
lustrates in detail the kinds of attack that we aim to detect, and
the footprints left in videos. Section III presents the rationale
behind the proposed detection algorithm and the details of the
implementation. In Section IV we report the results obtained
on a realistic dataset, highlighting our contribution. Finally, in
Section V we draw some conclusive remarks on this work,
and present possible future research directions.

II. PROBLEM FORMULATION

In this paper we propose a method to detect one of the most
common kinds of video forgery. That is, the attacker substi-
tutes a part of a video, by either adding or removing some-
thing to/from a scene. Specifically, we target the challenging
scenario in which a small spatio-temporal region is replaced,
which is far more complex than full-frame replacement.

When applied to still-images, this attack consists in replac-
ing a pixel region of the image using another region from
either the same image or a different one (copy-move forgery).
With this kind of attack it is then easy to either duplicate or
remove objects from a scene (e.g., by copying and pasting part
of the background over an object). However, video sequences

i

j

t

VV

XX

Fig. 1: Possible attack strategies. The volume V (red) is replaced by
the repetition of the same image (green) either from the same video
or from another source (on the left). Alternatively, the volume V

(red) is replaced with a volume (green) of the same dimension (on
the right).

are characterized by an additional degree of freedom due to the
temporal dimension. For this reason, when applied to videos,
the attack consists in replacing 3D volumes (in the spatio-
temporal domain), rather than 2D regions. It is worth to notice,
that typically the substitution is followed by a local filtering
operation (e.g., brightness or contrast adjustment) in order to
make the tampering more realistic.

Let X = {xt
i,j} denote a video sequence, where i ∈ [1, I],

j ∈ [1, J], and t ∈ [1, T] are the spatial and temporal
coordinates of pixel samples indexed by integer numbers. The
attack aims to replace the original set of connected pixels
represented by the volume V, with another set of connected
pixels V̂ of the same size of V, to obtain the forged sequence
X̂. In general, the shape of the volume V is arbitrary. For the
sake of clarity, we start considering the simple case in which
V is a box-shaped volume of samples. That is,

V = {xt
i,j | i ∈ [i0, i1], j ∈ [j0, j1], t ∈ [t0, t1]}. (1)

The general scenario can be accommodated by considering the
spatial indices to be time-dependent.

However, removing this dependency does not affect neither
the problem formulation, nor the algorithm, and allows us to
use a more compact notation.

In practice there are two possible choices for selecting the
set of pixels V̂, which determine the nature of the attack. The
first possibility is to replace the forged region with a series of
images, and the second consists in replacing that region with
a portion of video. Figure 1 shows these two scenarios. Let
us now analyze these two possibilities.

A. Image-based attack

This method consists in pasting a fixed image over a spatial
portion of a frame and repeating it in time (see left side of
Figure 1). Since the image content does not move in time, this
attack is generally applied to static scenes (e.g., when the video
comes from a steady camera and has a fixed background).
For this reason it is easy to replace V using either an image
taken from a frame of the same video (e.g., the background),
or another image (e.g., to introduce some text or additional
objects).

When the image comes from the same video, V̂ is populated
repeating in time a 2D region of the t-th frame {xt

i,j | i ∈
[i0, i1], j ∈ [j0, j1], t = t}. If the image comes from another

The main drawback of many state-of-the-art algorithms
lies in the insufficient validation on realistically tampered
videos. Since producing manually forged sequences is time
consuming, results are often presented for synthetically tam-
pered videos (i.e., obtained by automatically copy and pasting
regions in different positions), whose authenticity could be
immediately determined by simple visual inspection. Only in
some cases qualitative results are presented for just a few
(typically 2 or 3) hand-made realistic forged sequences. In
order to address this issue, in [15] the authors have recently
presented a publicly available and open database of realistic
forged sequences. The Surrey University Library for Forensic
Analysis (SULFA) database is still at an early stage. However,
the submission of additional forged video sequences is encour-
aged, and it may become a reference for future algorithms.

The main contribution of this paper is twofold. First, we pro-
pose a blind and automatic algorithm to detect local tampering
in videos, addressing different kinds of attacks. Second, we
contributed to the expansion of the SULFA database presented
in [15] with additional videos, in order to validate our method
on a broader set of realistic sequences and, at the same time,
offer to the scientific community a precious benchmarking
dataset for their future investigations.

The proposed algorithm is able to detect whether a spatio-
temporal region of a sequence (i.e., a block of connected pixels
in the spatio-temporal domain) was replaced by either a series
of fixed images repeated in time, or a portion of the same video
taken from a potentially different time interval. In the first case,
the algorithm detects the attack by analyzing the footprint left
on the residual computed between adjacent frames, and proves
to be robust to mild compression. In the second case, the attack
is detected exploiting a correlation analysis similar to [14].
However, our approach is fully automatic, and the position of
tampered frames is not assumed to be known a-priori.

The rest of the paper is organized as follows. Section II il-
lustrates in detail the kinds of attack that we aim to detect, and
the footprints left in videos. Section III presents the rationale
behind the proposed detection algorithm and the details of the
implementation. In Section IV we report the results obtained
on a realistic dataset, highlighting our contribution. Finally, in
Section V we draw some conclusive remarks on this work,
and present possible future research directions.

II. PROBLEM FORMULATION

In this paper we propose a method to detect one of the most
common kinds of video forgery. That is, the attacker substi-
tutes a part of a video, by either adding or removing some-
thing to/from a scene. Specifically, we target the challenging
scenario in which a small spatio-temporal region is replaced,
which is far more complex than full-frame replacement.

When applied to still-images, this attack consists in replac-
ing a pixel region of the image using another region from
either the same image or a different one (copy-move forgery).
With this kind of attack it is then easy to either duplicate or
remove objects from a scene (e.g., by copying and pasting part
of the background over an object). However, video sequences

i

j

t

VV

XX

Fig. 1: Possible attack strategies. The volume V (red) is replaced by
the repetition of the same image (green) either from the same video
or from another source (on the left). Alternatively, the volume V

(red) is replaced with a volume (green) of the same dimension (on
the right).

are characterized by an additional degree of freedom due to the
temporal dimension. For this reason, when applied to videos,
the attack consists in replacing 3D volumes (in the spatio-
temporal domain), rather than 2D regions. It is worth to notice,
that typically the substitution is followed by a local filtering
operation (e.g., brightness or contrast adjustment) in order to
make the tampering more realistic.

Let X = {xt
i,j} denote a video sequence, where i ∈ [1, I],

j ∈ [1, J], and t ∈ [1, T] are the spatial and temporal
coordinates of pixel samples indexed by integer numbers. The
attack aims to replace the original set of connected pixels
represented by the volume V, with another set of connected
pixels V̂ of the same size of V, to obtain the forged sequence
X̂. In general, the shape of the volume V is arbitrary. For the
sake of clarity, we start considering the simple case in which
V is a box-shaped volume of samples. That is,

V = {xt
i,j | i ∈ [i0, i1], j ∈ [j0, j1], t ∈ [t0, t1]}. (1)

The general scenario can be accommodated by considering the
spatial indices to be time-dependent.

However, removing this dependency does not affect neither
the problem formulation, nor the algorithm, and allows us to
use a more compact notation.

In practice there are two possible choices for selecting the
set of pixels V̂, which determine the nature of the attack. The
first possibility is to replace the forged region with a series of
images, and the second consists in replacing that region with
a portion of video. Figure 1 shows these two scenarios. Let
us now analyze these two possibilities.

A. Image-based attack

This method consists in pasting a fixed image over a spatial
portion of a frame and repeating it in time (see left side of
Figure 1). Since the image content does not move in time, this
attack is generally applied to static scenes (e.g., when the video
comes from a steady camera and has a fixed background).
For this reason it is easy to replace V using either an image
taken from a frame of the same video (e.g., the background),
or another image (e.g., to introduce some text or additional
objects).

When the image comes from the same video, V̂ is populated
repeating in time a 2D region of the t-th frame {xt

i,j | i ∈
[i0, i1], j ∈ [j0, j1], t = t}. If the image comes from another

The main drawback of many state-of-the-art algorithms
lies in the insufficient validation on realistically tampered
videos. Since producing manually forged sequences is time
consuming, results are often presented for synthetically tam-
pered videos (i.e., obtained by automatically copy and pasting
regions in different positions), whose authenticity could be
immediately determined by simple visual inspection. Only in
some cases qualitative results are presented for just a few
(typically 2 or 3) hand-made realistic forged sequences. In
order to address this issue, in [15] the authors have recently
presented a publicly available and open database of realistic
forged sequences. The Surrey University Library for Forensic
Analysis (SULFA) database is still at an early stage. However,
the submission of additional forged video sequences is encour-
aged, and it may become a reference for future algorithms.

The main contribution of this paper is twofold. First, we pro-
pose a blind and automatic algorithm to detect local tampering
in videos, addressing different kinds of attacks. Second, we
contributed to the expansion of the SULFA database presented
in [15] with additional videos, in order to validate our method
on a broader set of realistic sequences and, at the same time,
offer to the scientific community a precious benchmarking
dataset for their future investigations.

The proposed algorithm is able to detect whether a spatio-
temporal region of a sequence (i.e., a block of connected pixels
in the spatio-temporal domain) was replaced by either a series
of fixed images repeated in time, or a portion of the same video
taken from a potentially different time interval. In the first case,
the algorithm detects the attack by analyzing the footprint left
on the residual computed between adjacent frames, and proves
to be robust to mild compression. In the second case, the attack
is detected exploiting a correlation analysis similar to [14].
However, our approach is fully automatic, and the position of
tampered frames is not assumed to be known a-priori.

The rest of the paper is organized as follows. Section II il-
lustrates in detail the kinds of attack that we aim to detect, and
the footprints left in videos. Section III presents the rationale
behind the proposed detection algorithm and the details of the
implementation. In Section IV we report the results obtained
on a realistic dataset, highlighting our contribution. Finally, in
Section V we draw some conclusive remarks on this work,
and present possible future research directions.

II. PROBLEM FORMULATION

In this paper we propose a method to detect one of the most
common kinds of video forgery. That is, the attacker substi-
tutes a part of a video, by either adding or removing some-
thing to/from a scene. Specifically, we target the challenging
scenario in which a small spatio-temporal region is replaced,
which is far more complex than full-frame replacement.

When applied to still-images, this attack consists in replac-
ing a pixel region of the image using another region from
either the same image or a different one (copy-move forgery).
With this kind of attack it is then easy to either duplicate or
remove objects from a scene (e.g., by copying and pasting part
of the background over an object). However, video sequences

i

j

t

VV

XX

Fig. 1: Possible attack strategies. The volume V (red) is replaced by
the repetition of the same image (green) either from the same video
or from another source (on the left). Alternatively, the volume V

(red) is replaced with a volume (green) of the same dimension (on
the right).

are characterized by an additional degree of freedom due to the
temporal dimension. For this reason, when applied to videos,
the attack consists in replacing 3D volumes (in the spatio-
temporal domain), rather than 2D regions. It is worth to notice,
that typically the substitution is followed by a local filtering
operation (e.g., brightness or contrast adjustment) in order to
make the tampering more realistic.

Let X = {xt
i,j} denote a video sequence, where i ∈ [1, I],

j ∈ [1, J], and t ∈ [1, T] are the spatial and temporal
coordinates of pixel samples indexed by integer numbers. The
attack aims to replace the original set of connected pixels
represented by the volume V, with another set of connected
pixels V̂ of the same size of V, to obtain the forged sequence
X̂. In general, the shape of the volume V is arbitrary. For the
sake of clarity, we start considering the simple case in which
V is a box-shaped volume of samples. That is,

V = {xt
i,j | i ∈ [i0, i1], j ∈ [j0, j1], t ∈ [t0, t1]}. (1)

The general scenario can be accommodated by considering the
spatial indices to be time-dependent.

However, removing this dependency does not affect neither
the problem formulation, nor the algorithm, and allows us to
use a more compact notation.

In practice there are two possible choices for selecting the
set of pixels V̂, which determine the nature of the attack. The
first possibility is to replace the forged region with a series of
images, and the second consists in replacing that region with
a portion of video. Figure 1 shows these two scenarios. Let
us now analyze these two possibilities.

A. Image-based attack

This method consists in pasting a fixed image over a spatial
portion of a frame and repeating it in time (see left side of
Figure 1). Since the image content does not move in time, this
attack is generally applied to static scenes (e.g., when the video
comes from a steady camera and has a fixed background).
For this reason it is easy to replace V using either an image
taken from a frame of the same video (e.g., the background),
or another image (e.g., to introduce some text or additional
objects).

When the image comes from the same video, V̂ is populated
repeating in time a 2D region of the t-th frame {xt

i,j | i ∈
[i0, i1], j ∈ [j0, j1], t = t}. If the image comes from another

The main drawback of many state-of-the-art algorithms
lies in the insufficient validation on realistically tampered
videos. Since producing manually forged sequences is time
consuming, results are often presented for synthetically tam-
pered videos (i.e., obtained by automatically copy and pasting
regions in different positions), whose authenticity could be
immediately determined by simple visual inspection. Only in
some cases qualitative results are presented for just a few
(typically 2 or 3) hand-made realistic forged sequences. In
order to address this issue, in [15] the authors have recently
presented a publicly available and open database of realistic
forged sequences. The Surrey University Library for Forensic
Analysis (SULFA) database is still at an early stage. However,
the submission of additional forged video sequences is encour-
aged, and it may become a reference for future algorithms.

The main contribution of this paper is twofold. First, we pro-
pose a blind and automatic algorithm to detect local tampering
in videos, addressing different kinds of attacks. Second, we
contributed to the expansion of the SULFA database presented
in [15] with additional videos, in order to validate our method
on a broader set of realistic sequences and, at the same time,
offer to the scientific community a precious benchmarking
dataset for their future investigations.

The proposed algorithm is able to detect whether a spatio-
temporal region of a sequence (i.e., a block of connected pixels
in the spatio-temporal domain) was replaced by either a series
of fixed images repeated in time, or a portion of the same video
taken from a potentially different time interval. In the first case,
the algorithm detects the attack by analyzing the footprint left
on the residual computed between adjacent frames, and proves
to be robust to mild compression. In the second case, the attack
is detected exploiting a correlation analysis similar to [14].
However, our approach is fully automatic, and the position of
tampered frames is not assumed to be known a-priori.

The rest of the paper is organized as follows. Section II il-
lustrates in detail the kinds of attack that we aim to detect, and
the footprints left in videos. Section III presents the rationale
behind the proposed detection algorithm and the details of the
implementation. In Section IV we report the results obtained
on a realistic dataset, highlighting our contribution. Finally, in
Section V we draw some conclusive remarks on this work,
and present possible future research directions.

II. PROBLEM FORMULATION

In this paper we propose a method to detect one of the most
common kinds of video forgery. That is, the attacker substi-
tutes a part of a video, by either adding or removing some-
thing to/from a scene. Specifically, we target the challenging
scenario in which a small spatio-temporal region is replaced,
which is far more complex than full-frame replacement.

When applied to still-images, this attack consists in replac-
ing a pixel region of the image using another region from
either the same image or a different one (copy-move forgery).
With this kind of attack it is then easy to either duplicate or
remove objects from a scene (e.g., by copying and pasting part
of the background over an object). However, video sequences

i

j

t

VV

XX

Fig. 1: Possible attack strategies. The volume V (red) is replaced by
the repetition of the same image (green) either from the same video
or from another source (on the left). Alternatively, the volume V

(red) is replaced with a volume (green) of the same dimension (on
the right).

are characterized by an additional degree of freedom due to the
temporal dimension. For this reason, when applied to videos,
the attack consists in replacing 3D volumes (in the spatio-
temporal domain), rather than 2D regions. It is worth to notice,
that typically the substitution is followed by a local filtering
operation (e.g., brightness or contrast adjustment) in order to
make the tampering more realistic.

Let X = {xt
i,j} denote a video sequence, where i ∈ [1, I],

j ∈ [1, J], and t ∈ [1, T] are the spatial and temporal
coordinates of pixel samples indexed by integer numbers. The
attack aims to replace the original set of connected pixels
represented by the volume V, with another set of connected
pixels V̂ of the same size of V, to obtain the forged sequence
X̂. In general, the shape of the volume V is arbitrary. For the
sake of clarity, we start considering the simple case in which
V is a box-shaped volume of samples. That is,

V = {xt
i,j | i ∈ [i0, i1], j ∈ [j0, j1], t ∈ [t0, t1]}. (1)

The general scenario can be accommodated by considering the
spatial indices to be time-dependent.

However, removing this dependency does not affect neither
the problem formulation, nor the algorithm, and allows us to
use a more compact notation.

In practice there are two possible choices for selecting the
set of pixels V̂, which determine the nature of the attack. The
first possibility is to replace the forged region with a series of
images, and the second consists in replacing that region with
a portion of video. Figure 1 shows these two scenarios. Let
us now analyze these two possibilities.

A. Image-based attack

This method consists in pasting a fixed image over a spatial
portion of a frame and repeating it in time (see left side of
Figure 1). Since the image content does not move in time, this
attack is generally applied to static scenes (e.g., when the video
comes from a steady camera and has a fixed background).
For this reason it is easy to replace V using either an image
taken from a frame of the same video (e.g., the background),
or another image (e.g., to introduce some text or additional
objects).

When the image comes from the same video, V̂ is populated
repeating in time a 2D region of the t-th frame {xt

i,j | i ∈
[i0, i1], j ∈ [j0, j1], t = t}. If the image comes from another

!34

Paolo Bestagini

Editing-based footprints: image copy-paste

• Problem:
• An image is inserted and repeated in time

• Method:
• Exploit characteristic residual between adjacent frames

!35

Original Tampered (a) Original residual (b) Tampered residual

(c) Tampered and compressed
residual

(d) Tampered frame

Fig. 2: Effect of image copy-move attack on the residual between two
adjacent frames of an original sequence (a), its forged version (b),
and its forged and compressed version (c). The map is black only for
null residual. The tampered region is the area inside the red shape.
The realistic tampered frame where a car has been removed comes
from the database presented in [15], and it is shown in (d).

source, the concept is the same, but pixels of V̂ do not come
from X.

This attack leaves a characteristic footprints on the se-
quence. More specifically, since the same image is repeated in
time, the difference between adjacent frames is exactly zero for
pixels belonging to the area where the image was pasted. At
the same time, when the video is compressed after the attack,
frames differences assume many zero values also in other
regions. This is due to the compression-induced redundancy,
which sometimes duplicates blocks of pixels in time, e.g., due
to the skip mode available in most video coding architectures.
Figure 2 shows an example of the residual between adjacent
frames for: a) an original; b) a forged; and c) a forged and
compressed video. By exploiting this characteristic footprint
it is possible to detect and localize this kind of tampering as
described in Section III.

B. Video-based attack

This method consists in replacing a part of the sequence
with a portion of video (see right side of Figure 1). Typically,
to better integrate the duplicated region in the new part of
the video, a local filtering operation is applied. This attack
is typically used for scenes characterized by motion (e.g., to
duplicate moving objects, or the background when the camera
moves). However, since it is more difficult to realistically
integrate two different videos (because of possibly different
motion, illumination, etc.), this attack is commonly operated
by substituting V with a set of pixels coming from the same
video. This means populating V̂ with a set of connected pixels
according to eq.(1).

This attack does not leave peculiar footprints such as those

left by the image-based attack. However, since the forged
region V̂ comes from the same video sequence X, we can
exploit a correlation analysis to find the duplicated region.

III. DETECTION ALGORITHM

In order to detect and localize video tampering, we pro-
pose a two-step algorithm. The first step identifies videos
attacked with image-based attacks, and the second step detects
sequences attacked with video-based attacks. If both steps fail,
the sequence is considered authentic.

A. Detection of image-based attack

To detect image-based attacks, we analyze the zero-motion
video residual, obtained by taking the difference between
pixels in the same spatial position on consecutive frames.
Indeed, as previously shown, the residual is zero where images
were spliced. For this reason we search for frames with a
region of zero residual that remains constant in time. In
other words, we aim to find the largest 3D bounding volume
that contains only zero residual values. To achieve this goal,
we propose an algorithm based on iterative morphological
operations and clustering.

The morphological operation that we apply aims to compute
a binary 3D map, where 1 indicates that a pixel might have
been tampered with. To this purpose, let us define the video
residual as the difference between adjacent frames

rti,j = xt
i,j − xt+1

i,j , (2)

and the residual binary mask as

mt
i,j =

{

1 if rti,j = 0,

0 otherwise,
(3)

with i ∈ [1, I], j ∈ [1, J], t ∈ [1, T−1]. The binary mask maps
the 0 residual values to 1, and sets everything else to 0. Let
M ∈ {0, 1}I×J×T−1 denote the 3D matrix whose elements
are mt

i,j . Then, we apply morphological erosion to M with a
3D Structuring Element (SE) Hdi,dj,dt of size di × dj × dt,
composed by ones, obtaining the final 3D map

E = {eti,j} = M⊖H
di,dj,dt, (4)

where ⊖ represents morphological erosion. In this situation,
erosion acts as a filter that removes sub-volumes of E con-
taining just a few values equal to 1 (i.e., small regions whose
residual is equal to zero), which are more likely to be due
to tampering than to compression. Indeed, compression intro-
duces high correlation between frames, therefore the residual
may assume zero value even in non-tampered regions. The size
of H determines the minimum block of null residual that we
accept as not due to compression. As a matter of fact, using a
large structuring element H would result in deleting all traces
of tampering. Conversely, using a small structuring element
H would lead to mistaking every small volume with residual
equal to 0 for a tampered area. For this reason, we start from
a large value of H (16 × 16 × 30 in our experiments), and
decrease it iteratively, until we detect a plausible tampering

(a) Original residual (b) Tampered residual

(c) Tampered and compressed
residual

(d) Tampered frame

Fig. 2: Effect of image copy-move attack on the residual between two
adjacent frames of an original sequence (a), its forged version (b),
and its forged and compressed version (c). The map is black only for
null residual. The tampered region is the area inside the red shape.
The realistic tampered frame where a car has been removed comes
from the database presented in [15], and it is shown in (d).

source, the concept is the same, but pixels of V̂ do not come
from X.

This attack leaves a characteristic footprints on the se-
quence. More specifically, since the same image is repeated in
time, the difference between adjacent frames is exactly zero for
pixels belonging to the area where the image was pasted. At
the same time, when the video is compressed after the attack,
frames differences assume many zero values also in other
regions. This is due to the compression-induced redundancy,
which sometimes duplicates blocks of pixels in time, e.g., due
to the skip mode available in most video coding architectures.
Figure 2 shows an example of the residual between adjacent
frames for: a) an original; b) a forged; and c) a forged and
compressed video. By exploiting this characteristic footprint
it is possible to detect and localize this kind of tampering as
described in Section III.

B. Video-based attack

This method consists in replacing a part of the sequence
with a portion of video (see right side of Figure 1). Typically,
to better integrate the duplicated region in the new part of
the video, a local filtering operation is applied. This attack
is typically used for scenes characterized by motion (e.g., to
duplicate moving objects, or the background when the camera
moves). However, since it is more difficult to realistically
integrate two different videos (because of possibly different
motion, illumination, etc.), this attack is commonly operated
by substituting V with a set of pixels coming from the same
video. This means populating V̂ with a set of connected pixels
according to eq.(1).

This attack does not leave peculiar footprints such as those

left by the image-based attack. However, since the forged
region V̂ comes from the same video sequence X, we can
exploit a correlation analysis to find the duplicated region.

III. DETECTION ALGORITHM

In order to detect and localize video tampering, we pro-
pose a two-step algorithm. The first step identifies videos
attacked with image-based attacks, and the second step detects
sequences attacked with video-based attacks. If both steps fail,
the sequence is considered authentic.

A. Detection of image-based attack

To detect image-based attacks, we analyze the zero-motion
video residual, obtained by taking the difference between
pixels in the same spatial position on consecutive frames.
Indeed, as previously shown, the residual is zero where images
were spliced. For this reason we search for frames with a
region of zero residual that remains constant in time. In
other words, we aim to find the largest 3D bounding volume
that contains only zero residual values. To achieve this goal,
we propose an algorithm based on iterative morphological
operations and clustering.

The morphological operation that we apply aims to compute
a binary 3D map, where 1 indicates that a pixel might have
been tampered with. To this purpose, let us define the video
residual as the difference between adjacent frames

rti,j = xt
i,j − xt+1

i,j , (2)

and the residual binary mask as

mt
i,j =

{

1 if rti,j = 0,

0 otherwise,
(3)

with i ∈ [1, I], j ∈ [1, J], t ∈ [1, T−1]. The binary mask maps
the 0 residual values to 1, and sets everything else to 0. Let
M ∈ {0, 1}I×J×T−1 denote the 3D matrix whose elements
are mt

i,j . Then, we apply morphological erosion to M with a
3D Structuring Element (SE) Hdi,dj,dt of size di × dj × dt,
composed by ones, obtaining the final 3D map

E = {eti,j} = M⊖H
di,dj,dt, (4)

where ⊖ represents morphological erosion. In this situation,
erosion acts as a filter that removes sub-volumes of E con-
taining just a few values equal to 1 (i.e., small regions whose
residual is equal to zero), which are more likely to be due
to tampering than to compression. Indeed, compression intro-
duces high correlation between frames, therefore the residual
may assume zero value even in non-tampered regions. The size
of H determines the minimum block of null residual that we
accept as not due to compression. As a matter of fact, using a
large structuring element H would result in deleting all traces
of tampering. Conversely, using a small structuring element
H would lead to mistaking every small volume with residual
equal to 0 for a tampered area. For this reason, we start from
a large value of H (16 × 16 × 30 in our experiments), and
decrease it iteratively, until we detect a plausible tampering

(a) Original residual (b) Tampered residual

(c) Tampered and compressed
residual

(d) Tampered frame

Fig. 2: Effect of image copy-move attack on the residual between two
adjacent frames of an original sequence (a), its forged version (b),
and its forged and compressed version (c). The map is black only for
null residual. The tampered region is the area inside the red shape.
The realistic tampered frame where a car has been removed comes
from the database presented in [15], and it is shown in (d).

source, the concept is the same, but pixels of V̂ do not come
from X.

This attack leaves a characteristic footprints on the se-
quence. More specifically, since the same image is repeated in
time, the difference between adjacent frames is exactly zero for
pixels belonging to the area where the image was pasted. At
the same time, when the video is compressed after the attack,
frames differences assume many zero values also in other
regions. This is due to the compression-induced redundancy,
which sometimes duplicates blocks of pixels in time, e.g., due
to the skip mode available in most video coding architectures.
Figure 2 shows an example of the residual between adjacent
frames for: a) an original; b) a forged; and c) a forged and
compressed video. By exploiting this characteristic footprint
it is possible to detect and localize this kind of tampering as
described in Section III.

B. Video-based attack

This method consists in replacing a part of the sequence
with a portion of video (see right side of Figure 1). Typically,
to better integrate the duplicated region in the new part of
the video, a local filtering operation is applied. This attack
is typically used for scenes characterized by motion (e.g., to
duplicate moving objects, or the background when the camera
moves). However, since it is more difficult to realistically
integrate two different videos (because of possibly different
motion, illumination, etc.), this attack is commonly operated
by substituting V with a set of pixels coming from the same
video. This means populating V̂ with a set of connected pixels
according to eq.(1).

This attack does not leave peculiar footprints such as those

left by the image-based attack. However, since the forged
region V̂ comes from the same video sequence X, we can
exploit a correlation analysis to find the duplicated region.

III. DETECTION ALGORITHM

In order to detect and localize video tampering, we pro-
pose a two-step algorithm. The first step identifies videos
attacked with image-based attacks, and the second step detects
sequences attacked with video-based attacks. If both steps fail,
the sequence is considered authentic.

A. Detection of image-based attack

To detect image-based attacks, we analyze the zero-motion
video residual, obtained by taking the difference between
pixels in the same spatial position on consecutive frames.
Indeed, as previously shown, the residual is zero where images
were spliced. For this reason we search for frames with a
region of zero residual that remains constant in time. In
other words, we aim to find the largest 3D bounding volume
that contains only zero residual values. To achieve this goal,
we propose an algorithm based on iterative morphological
operations and clustering.

The morphological operation that we apply aims to compute
a binary 3D map, where 1 indicates that a pixel might have
been tampered with. To this purpose, let us define the video
residual as the difference between adjacent frames

rti,j = xt
i,j − xt+1

i,j , (2)

and the residual binary mask as

mt
i,j =

{

1 if rti,j = 0,

0 otherwise,
(3)

with i ∈ [1, I], j ∈ [1, J], t ∈ [1, T−1]. The binary mask maps
the 0 residual values to 1, and sets everything else to 0. Let
M ∈ {0, 1}I×J×T−1 denote the 3D matrix whose elements
are mt

i,j . Then, we apply morphological erosion to M with a
3D Structuring Element (SE) Hdi,dj,dt of size di × dj × dt,
composed by ones, obtaining the final 3D map

E = {eti,j} = M⊖H
di,dj,dt, (4)

where ⊖ represents morphological erosion. In this situation,
erosion acts as a filter that removes sub-volumes of E con-
taining just a few values equal to 1 (i.e., small regions whose
residual is equal to zero), which are more likely to be due
to tampering than to compression. Indeed, compression intro-
duces high correlation between frames, therefore the residual
may assume zero value even in non-tampered regions. The size
of H determines the minimum block of null residual that we
accept as not due to compression. As a matter of fact, using a
large structuring element H would result in deleting all traces
of tampering. Conversely, using a small structuring element
H would lead to mistaking every small volume with residual
equal to 0 for a tampered area. For this reason, we start from
a large value of H (16 × 16 × 30 in our experiments), and
decrease it iteratively, until we detect a plausible tampering

Paolo Bestagini

Editing-based footprints: image copy-paste !36

ALGORITHM:
!  Define the residual

•  Zero for possibly tampered pixels

!  Define the residual mask as
•  One for possibly tampered pixels

!  Apply an erosion with a Structuring Element and obtain

•  Remove small areas

!  Compute the feature vector
•  cardinality of the longest set of ones in (i,j)
•  starting t value of the longest set of ones

!  Search the longest set of ones starting from the same t

(a) Original residual (b) Tampered residual

(c) Tampered and compressed
residual

(d) Tampered frame

Fig. 2: Effect of image copy-move attack on the residual between two
adjacent frames of an original sequence (a), its forged version (b),
and its forged and compressed version (c). The map is black only for
null residual. The tampered region is the area inside the red shape.
The realistic tampered frame where a car has been removed comes
from the database presented in [15], and it is shown in (d).

source, the concept is the same, but pixels of V̂ do not come
from X.

This attack leaves a characteristic footprints on the se-
quence. More specifically, since the same image is repeated in
time, the difference between adjacent frames is exactly zero for
pixels belonging to the area where the image was pasted. At
the same time, when the video is compressed after the attack,
frames differences assume many zero values also in other
regions. This is due to the compression-induced redundancy,
which sometimes duplicates blocks of pixels in time, e.g., due
to the skip mode available in most video coding architectures.
Figure 2 shows an example of the residual between adjacent
frames for: a) an original; b) a forged; and c) a forged and
compressed video. By exploiting this characteristic footprint
it is possible to detect and localize this kind of tampering as
described in Section III.

B. Video-based attack

This method consists in replacing a part of the sequence
with a portion of video (see right side of Figure 1). Typically,
to better integrate the duplicated region in the new part of
the video, a local filtering operation is applied. This attack
is typically used for scenes characterized by motion (e.g., to
duplicate moving objects, or the background when the camera
moves). However, since it is more difficult to realistically
integrate two different videos (because of possibly different
motion, illumination, etc.), this attack is commonly operated
by substituting V with a set of pixels coming from the same
video. This means populating V̂ with a set of connected pixels
according to eq.(1).

This attack does not leave peculiar footprints such as those

left by the image-based attack. However, since the forged
region V̂ comes from the same video sequence X, we can
exploit a correlation analysis to find the duplicated region.

III. DETECTION ALGORITHM

In order to detect and localize video tampering, we pro-
pose a two-step algorithm. The first step identifies videos
attacked with image-based attacks, and the second step detects
sequences attacked with video-based attacks. If both steps fail,
the sequence is considered authentic.

A. Detection of image-based attack

To detect image-based attacks, we analyze the zero-motion
video residual, obtained by taking the difference between
pixels in the same spatial position on consecutive frames.
Indeed, as previously shown, the residual is zero where images
were spliced. For this reason we search for frames with a
region of zero residual that remains constant in time. In
other words, we aim to find the largest 3D bounding volume
that contains only zero residual values. To achieve this goal,
we propose an algorithm based on iterative morphological
operations and clustering.

The morphological operation that we apply aims to compute
a binary 3D map, where 1 indicates that a pixel might have
been tampered with. To this purpose, let us define the video
residual as the difference between adjacent frames

rti,j = xt
i,j − xt+1

i,j , (2)

and the residual binary mask as

mt
i,j =

{

1 if rti,j = 0,

0 otherwise,
(3)

with i ∈ [1, I], j ∈ [1, J], t ∈ [1, T−1]. The binary mask maps
the 0 residual values to 1, and sets everything else to 0. Let
M ∈ {0, 1}I×J×T−1 denote the 3D matrix whose elements
are mt

i,j . Then, we apply morphological erosion to M with a
3D Structuring Element (SE) Hdi,dj,dt of size di × dj × dt,
composed by ones, obtaining the final 3D map

E = {eti,j} = M⊖H
di,dj,dt, (4)

where ⊖ represents morphological erosion. In this situation,
erosion acts as a filter that removes sub-volumes of E con-
taining just a few values equal to 1 (i.e., small regions whose
residual is equal to zero), which are more likely to be due
to tampering than to compression. Indeed, compression intro-
duces high correlation between frames, therefore the residual
may assume zero value even in non-tampered regions. The size
of H determines the minimum block of null residual that we
accept as not due to compression. As a matter of fact, using a
large structuring element H would result in deleting all traces
of tampering. Conversely, using a small structuring element
H would lead to mistaking every small volume with residual
equal to 0 for a tampered area. For this reason, we start from
a large value of H (16 × 16 × 30 in our experiments), and
decrease it iteratively, until we detect a plausible tampering

(a) Original residual (b) Tampered residual

(c) Tampered and compressed
residual

(d) Tampered frame

Fig. 2: Effect of image copy-move attack on the residual between two
adjacent frames of an original sequence (a), its forged version (b),
and its forged and compressed version (c). The map is black only for
null residual. The tampered region is the area inside the red shape.
The realistic tampered frame where a car has been removed comes
from the database presented in [15], and it is shown in (d).

source, the concept is the same, but pixels of V̂ do not come
from X.

This attack leaves a characteristic footprints on the se-
quence. More specifically, since the same image is repeated in
time, the difference between adjacent frames is exactly zero for
pixels belonging to the area where the image was pasted. At
the same time, when the video is compressed after the attack,
frames differences assume many zero values also in other
regions. This is due to the compression-induced redundancy,
which sometimes duplicates blocks of pixels in time, e.g., due
to the skip mode available in most video coding architectures.
Figure 2 shows an example of the residual between adjacent
frames for: a) an original; b) a forged; and c) a forged and
compressed video. By exploiting this characteristic footprint
it is possible to detect and localize this kind of tampering as
described in Section III.

B. Video-based attack

This method consists in replacing a part of the sequence
with a portion of video (see right side of Figure 1). Typically,
to better integrate the duplicated region in the new part of
the video, a local filtering operation is applied. This attack
is typically used for scenes characterized by motion (e.g., to
duplicate moving objects, or the background when the camera
moves). However, since it is more difficult to realistically
integrate two different videos (because of possibly different
motion, illumination, etc.), this attack is commonly operated
by substituting V with a set of pixels coming from the same
video. This means populating V̂ with a set of connected pixels
according to eq.(1).

This attack does not leave peculiar footprints such as those

left by the image-based attack. However, since the forged
region V̂ comes from the same video sequence X, we can
exploit a correlation analysis to find the duplicated region.

III. DETECTION ALGORITHM

In order to detect and localize video tampering, we pro-
pose a two-step algorithm. The first step identifies videos
attacked with image-based attacks, and the second step detects
sequences attacked with video-based attacks. If both steps fail,
the sequence is considered authentic.

A. Detection of image-based attack

To detect image-based attacks, we analyze the zero-motion
video residual, obtained by taking the difference between
pixels in the same spatial position on consecutive frames.
Indeed, as previously shown, the residual is zero where images
were spliced. For this reason we search for frames with a
region of zero residual that remains constant in time. In
other words, we aim to find the largest 3D bounding volume
that contains only zero residual values. To achieve this goal,
we propose an algorithm based on iterative morphological
operations and clustering.

The morphological operation that we apply aims to compute
a binary 3D map, where 1 indicates that a pixel might have
been tampered with. To this purpose, let us define the video
residual as the difference between adjacent frames

rti,j = xt
i,j − xt+1

i,j , (2)

and the residual binary mask as

mt
i,j =

{

1 if rti,j = 0,

0 otherwise,
(3)

with i ∈ [1, I], j ∈ [1, J], t ∈ [1, T−1]. The binary mask maps
the 0 residual values to 1, and sets everything else to 0. Let
M ∈ {0, 1}I×J×T−1 denote the 3D matrix whose elements
are mt

i,j . Then, we apply morphological erosion to M with a
3D Structuring Element (SE) Hdi,dj,dt of size di × dj × dt,
composed by ones, obtaining the final 3D map

E = {eti,j} = M⊖H
di,dj,dt, (4)

where ⊖ represents morphological erosion. In this situation,
erosion acts as a filter that removes sub-volumes of E con-
taining just a few values equal to 1 (i.e., small regions whose
residual is equal to zero), which are more likely to be due
to tampering than to compression. Indeed, compression intro-
duces high correlation between frames, therefore the residual
may assume zero value even in non-tampered regions. The size
of H determines the minimum block of null residual that we
accept as not due to compression. As a matter of fact, using a
large structuring element H would result in deleting all traces
of tampering. Conversely, using a small structuring element
H would lead to mistaking every small volume with residual
equal to 0 for a tampered area. For this reason, we start from
a large value of H (16 × 16 × 30 in our experiments), and
decrease it iteratively, until we detect a plausible tampering

(a) Original residual (b) Tampered residual

(c) Tampered and compressed
residual

(d) Tampered frame

Fig. 2: Effect of image copy-move attack on the residual between two
adjacent frames of an original sequence (a), its forged version (b),
and its forged and compressed version (c). The map is black only for
null residual. The tampered region is the area inside the red shape.
The realistic tampered frame where a car has been removed comes
from the database presented in [15], and it is shown in (d).

source, the concept is the same, but pixels of V̂ do not come
from X.

This attack leaves a characteristic footprints on the se-
quence. More specifically, since the same image is repeated in
time, the difference between adjacent frames is exactly zero for
pixels belonging to the area where the image was pasted. At
the same time, when the video is compressed after the attack,
frames differences assume many zero values also in other
regions. This is due to the compression-induced redundancy,
which sometimes duplicates blocks of pixels in time, e.g., due
to the skip mode available in most video coding architectures.
Figure 2 shows an example of the residual between adjacent
frames for: a) an original; b) a forged; and c) a forged and
compressed video. By exploiting this characteristic footprint
it is possible to detect and localize this kind of tampering as
described in Section III.

B. Video-based attack

This method consists in replacing a part of the sequence
with a portion of video (see right side of Figure 1). Typically,
to better integrate the duplicated region in the new part of
the video, a local filtering operation is applied. This attack
is typically used for scenes characterized by motion (e.g., to
duplicate moving objects, or the background when the camera
moves). However, since it is more difficult to realistically
integrate two different videos (because of possibly different
motion, illumination, etc.), this attack is commonly operated
by substituting V with a set of pixels coming from the same
video. This means populating V̂ with a set of connected pixels
according to eq.(1).

This attack does not leave peculiar footprints such as those

left by the image-based attack. However, since the forged
region V̂ comes from the same video sequence X, we can
exploit a correlation analysis to find the duplicated region.

III. DETECTION ALGORITHM

In order to detect and localize video tampering, we pro-
pose a two-step algorithm. The first step identifies videos
attacked with image-based attacks, and the second step detects
sequences attacked with video-based attacks. If both steps fail,
the sequence is considered authentic.

A. Detection of image-based attack

To detect image-based attacks, we analyze the zero-motion
video residual, obtained by taking the difference between
pixels in the same spatial position on consecutive frames.
Indeed, as previously shown, the residual is zero where images
were spliced. For this reason we search for frames with a
region of zero residual that remains constant in time. In
other words, we aim to find the largest 3D bounding volume
that contains only zero residual values. To achieve this goal,
we propose an algorithm based on iterative morphological
operations and clustering.

The morphological operation that we apply aims to compute
a binary 3D map, where 1 indicates that a pixel might have
been tampered with. To this purpose, let us define the video
residual as the difference between adjacent frames

rti,j = xt
i,j − xt+1

i,j , (2)

and the residual binary mask as

mt
i,j =

{

1 if rti,j = 0,

0 otherwise,
(3)

with i ∈ [1, I], j ∈ [1, J], t ∈ [1, T−1]. The binary mask maps
the 0 residual values to 1, and sets everything else to 0. Let
M ∈ {0, 1}I×J×T−1 denote the 3D matrix whose elements
are mt

i,j . Then, we apply morphological erosion to M with a
3D Structuring Element (SE) Hdi,dj,dt of size di × dj × dt,
composed by ones, obtaining the final 3D map

E = {eti,j} = M⊖H
di,dj,dt, (4)

where ⊖ represents morphological erosion. In this situation,
erosion acts as a filter that removes sub-volumes of E con-
taining just a few values equal to 1 (i.e., small regions whose
residual is equal to zero), which are more likely to be due
to tampering than to compression. Indeed, compression intro-
duces high correlation between frames, therefore the residual
may assume zero value even in non-tampered regions. The size
of H determines the minimum block of null residual that we
accept as not due to compression. As a matter of fact, using a
large structuring element H would result in deleting all traces
of tampering. Conversely, using a small structuring element
H would lead to mistaking every small volume with residual
equal to 0 for a tampered area. For this reason, we start from
a large value of H (16 × 16 × 30 in our experiments), and
decrease it iteratively, until we detect a plausible tampering

(a) Original residual (b) Tampered residual

(c) Tampered and compressed
residual

(d) Tampered frame

Fig. 2: Effect of image copy-move attack on the residual between two
adjacent frames of an original sequence (a), its forged version (b),
and its forged and compressed version (c). The map is black only for
null residual. The tampered region is the area inside the red shape.
The realistic tampered frame where a car has been removed comes
from the database presented in [15], and it is shown in (d).

source, the concept is the same, but pixels of V̂ do not come
from X.

This attack leaves a characteristic footprints on the se-
quence. More specifically, since the same image is repeated in
time, the difference between adjacent frames is exactly zero for
pixels belonging to the area where the image was pasted. At
the same time, when the video is compressed after the attack,
frames differences assume many zero values also in other
regions. This is due to the compression-induced redundancy,
which sometimes duplicates blocks of pixels in time, e.g., due
to the skip mode available in most video coding architectures.
Figure 2 shows an example of the residual between adjacent
frames for: a) an original; b) a forged; and c) a forged and
compressed video. By exploiting this characteristic footprint
it is possible to detect and localize this kind of tampering as
described in Section III.

B. Video-based attack

This method consists in replacing a part of the sequence
with a portion of video (see right side of Figure 1). Typically,
to better integrate the duplicated region in the new part of
the video, a local filtering operation is applied. This attack
is typically used for scenes characterized by motion (e.g., to
duplicate moving objects, or the background when the camera
moves). However, since it is more difficult to realistically
integrate two different videos (because of possibly different
motion, illumination, etc.), this attack is commonly operated
by substituting V with a set of pixels coming from the same
video. This means populating V̂ with a set of connected pixels
according to eq.(1).

This attack does not leave peculiar footprints such as those

left by the image-based attack. However, since the forged
region V̂ comes from the same video sequence X, we can
exploit a correlation analysis to find the duplicated region.

III. DETECTION ALGORITHM

In order to detect and localize video tampering, we pro-
pose a two-step algorithm. The first step identifies videos
attacked with image-based attacks, and the second step detects
sequences attacked with video-based attacks. If both steps fail,
the sequence is considered authentic.

A. Detection of image-based attack

To detect image-based attacks, we analyze the zero-motion
video residual, obtained by taking the difference between
pixels in the same spatial position on consecutive frames.
Indeed, as previously shown, the residual is zero where images
were spliced. For this reason we search for frames with a
region of zero residual that remains constant in time. In
other words, we aim to find the largest 3D bounding volume
that contains only zero residual values. To achieve this goal,
we propose an algorithm based on iterative morphological
operations and clustering.

The morphological operation that we apply aims to compute
a binary 3D map, where 1 indicates that a pixel might have
been tampered with. To this purpose, let us define the video
residual as the difference between adjacent frames

rti,j = xt
i,j − xt+1

i,j , (2)

and the residual binary mask as

mt
i,j =

{

1 if rti,j = 0,

0 otherwise,
(3)

with i ∈ [1, I], j ∈ [1, J], t ∈ [1, T−1]. The binary mask maps
the 0 residual values to 1, and sets everything else to 0. Let
M ∈ {0, 1}I×J×T−1 denote the 3D matrix whose elements
are mt

i,j . Then, we apply morphological erosion to M with a
3D Structuring Element (SE) Hdi,dj,dt of size di × dj × dt,
composed by ones, obtaining the final 3D map

E = {eti,j} = M⊖H
di,dj,dt, (4)

where ⊖ represents morphological erosion. In this situation,
erosion acts as a filter that removes sub-volumes of E con-
taining just a few values equal to 1 (i.e., small regions whose
residual is equal to zero), which are more likely to be due
to tampering than to compression. Indeed, compression intro-
duces high correlation between frames, therefore the residual
may assume zero value even in non-tampered regions. The size
of H determines the minimum block of null residual that we
accept as not due to compression. As a matter of fact, using a
large structuring element H would result in deleting all traces
of tampering. Conversely, using a small structuring element
H would lead to mistaking every small volume with residual
equal to 0 for a tampered area. For this reason, we start from
a large value of H (16 × 16 × 30 in our experiments), and
decrease it iteratively, until we detect a plausible tampering

(a) Tampered frame (b) Detected mask

(c) f1
i,j (d) f2

i,j

Fig. 3: A tampered and compressed frame from [15] (a) whose
tampered region lies inside the red shape, the 2D projection on
(i, j) domain of the estimated tampering location (b), and the 2D
distributions of f1

i,j (c) and f2
i,j (d).

region according to the criteria indicated below. In case none
of the criteria is met, the iteration is terminated when we
reach the smallest acceptable value of H (4 × 4 × 5 in our
experiments).

In principle, each value eti,j = 1 indicates tampering on
that pixel position. However, in order to evaluate which pixels
actually belong to a tampered area, we associate to each pair
of spatial coordinates (i, j) a feature vector Fi,j = [f1

i,j , f
2
i,j].

The two features are computed as follows:

• f1
i,j : this feature is the cardinality of the largest set

of adjacent ones in eti,j along the temporal direction.
It represents the largest number of consecutive frames
possibly tampered in the position (i, j).

• f2
i,j : this feature is the t value from which the largest set

of adjacent ones starts. It represents the starting frame of
the possible tampering of length f1

i,j .

By simply analyzing Fi,j values, we can find the largest
volume of possibly tampered pixels starting from the same
frame. More specifically, we search for the pixel positions
(i, j) with the highest f1

i,j values, and check if they start
from the same time position given by f2

i,j . If this volume is
bigger than a given threshold (set according to the minimum
tampering volume that we want to detect) we detect the
presence of tampering. The tampering localization map is then
built according to the pixels belonging to the detected cluster.
Figure 3 shows a tampered frame, the values of f1

i,j and f2
i,j ,

and the detected tampering mask.

B. Detection of video-based attack

The video-based attack does not leave a characteristic
footprint such as that left by the image-based attack. For this
reason, this kind of attack is not detected by the algorithm de-
scribed in Section III-A. However, in practical situations, it is
customary to replace a video region with another region from

the same sequence (e.g., background copy-move to remove an
object or a person). Hence, we propose a correlation method
similar to that in [14], which aims to find the duplicated
content. Unlike [14], we also detect which are the tampered
frames, without assuming a-priori knowledge, thus moving
from a semi-supervised to a fully unsupervised method.

The main idea of this step is to detect duplicated content in
the 3D domain by cross-correlating small 3D blocks. Indeed,
rather than simply correlating frame regions, we correlate
spatio-temporal portions of X. In order to reduce the com-
putational complexity, yet achieving high accuracy, we resize
the sequence in the spatial domain by a factor or 5, while
retaining the full temporal resolution.

To this end, we first compute the residual matrix R = {rti,j}
of the downscaled sequence according to eq. (2). Analyzing
R rather than X allows us to remove the effect of linear
operations (e.g., brightness adjustment) that may have been
applied to the duplicated block. Then, we split R into non
overlapping 3D blocks Bn

m of size di × dj × dt, where n is
the starting time index of a block, and m ∈ [1,M] is the
block index. We start analyzing all the blocks starting from
a given time instant. If none of these blocks is detected to
be duplicated (according to the method illustrated below), we
analyze the next set of blocks (i.e., we increase the value n).

The detector is based on the phase-correlation between Bn
m

and R as

C
t
i,j(B

n
m) = F−1

(

F(Bn
m)F(R)∗

|F(Bn
m)F(R)∗|

)

, (5)

where F is the Fourier transform operator, and ∗ indicates
the complex conjugate. This 3D correlation computes the
similarity between a selected block Bn

m and the rest of the
sequence. Notice that we make use of phase-correlation since
it is computationally efficient, and in [14] the authors prove
its robustness in detecting duplications. Let us define the
maximum correlation value obtained for each time position
as

ctBn

m

= max
i,j

(

|Ct
i,j(B

n
m)|

)

. (6)

Figure 4 shows the behavior of ct
Bn

m

for a duplicated and a
non-duplicated block. The most prominent peak is due to auto-
correlation, i.e., it is located in the exact time position n from
which Bn

m starts. The position of the second highest peak
represents the position of a possible duplication (e.g., at time
ñ). If the second peak is sufficiently high (at least 0.6 times
the first peak in our experiments), we associate a confidence
value to the block Bn

m according to the max/mean ratio

pBn

m

=
max(ct

Bn

m

)
1

(T−1)

∑

t c
t
Bn

m

. (7)

Among the M blocks starting at frame n, the one characterized
by the largest value of pBn

m

is the most likely duplicate can-
didate. To take the final decision, we compare this block with
those starting from the frame whose time index corresponds
to the second peak in ct

Bn

m

(i.e., the blocks Bñ
m, if the second

(a) Tampered frame (b) Detected mask

(c) f1
i,j (d) f2

i,j

Fig. 3: A tampered and compressed frame from [15] (a) whose
tampered region lies inside the red shape, the 2D projection on
(i, j) domain of the estimated tampering location (b), and the 2D
distributions of f1

i,j (c) and f2
i,j (d).

region according to the criteria indicated below. In case none
of the criteria is met, the iteration is terminated when we
reach the smallest acceptable value of H (4 × 4 × 5 in our
experiments).

In principle, each value eti,j = 1 indicates tampering on
that pixel position. However, in order to evaluate which pixels
actually belong to a tampered area, we associate to each pair
of spatial coordinates (i, j) a feature vector Fi,j = [f1

i,j , f
2
i,j].

The two features are computed as follows:

• f1
i,j : this feature is the cardinality of the largest set

of adjacent ones in eti,j along the temporal direction.
It represents the largest number of consecutive frames
possibly tampered in the position (i, j).

• f2
i,j : this feature is the t value from which the largest set

of adjacent ones starts. It represents the starting frame of
the possible tampering of length f1

i,j .

By simply analyzing Fi,j values, we can find the largest
volume of possibly tampered pixels starting from the same
frame. More specifically, we search for the pixel positions
(i, j) with the highest f1

i,j values, and check if they start
from the same time position given by f2

i,j . If this volume is
bigger than a given threshold (set according to the minimum
tampering volume that we want to detect) we detect the
presence of tampering. The tampering localization map is then
built according to the pixels belonging to the detected cluster.
Figure 3 shows a tampered frame, the values of f1

i,j and f2
i,j ,

and the detected tampering mask.

B. Detection of video-based attack

The video-based attack does not leave a characteristic
footprint such as that left by the image-based attack. For this
reason, this kind of attack is not detected by the algorithm de-
scribed in Section III-A. However, in practical situations, it is
customary to replace a video region with another region from

the same sequence (e.g., background copy-move to remove an
object or a person). Hence, we propose a correlation method
similar to that in [14], which aims to find the duplicated
content. Unlike [14], we also detect which are the tampered
frames, without assuming a-priori knowledge, thus moving
from a semi-supervised to a fully unsupervised method.

The main idea of this step is to detect duplicated content in
the 3D domain by cross-correlating small 3D blocks. Indeed,
rather than simply correlating frame regions, we correlate
spatio-temporal portions of X. In order to reduce the com-
putational complexity, yet achieving high accuracy, we resize
the sequence in the spatial domain by a factor or 5, while
retaining the full temporal resolution.

To this end, we first compute the residual matrix R = {rti,j}
of the downscaled sequence according to eq. (2). Analyzing
R rather than X allows us to remove the effect of linear
operations (e.g., brightness adjustment) that may have been
applied to the duplicated block. Then, we split R into non
overlapping 3D blocks Bn

m of size di × dj × dt, where n is
the starting time index of a block, and m ∈ [1,M] is the
block index. We start analyzing all the blocks starting from
a given time instant. If none of these blocks is detected to
be duplicated (according to the method illustrated below), we
analyze the next set of blocks (i.e., we increase the value n).

The detector is based on the phase-correlation between Bn
m

and R as

C
t
i,j(B

n
m) = F−1

(

F(Bn
m)F(R)∗

|F(Bn
m)F(R)∗|

)

, (5)

where F is the Fourier transform operator, and ∗ indicates
the complex conjugate. This 3D correlation computes the
similarity between a selected block Bn

m and the rest of the
sequence. Notice that we make use of phase-correlation since
it is computationally efficient, and in [14] the authors prove
its robustness in detecting duplications. Let us define the
maximum correlation value obtained for each time position
as

ctBn

m

= max
i,j

(

|Ct
i,j(B

n
m)|

)

. (6)

Figure 4 shows the behavior of ct
Bn

m

for a duplicated and a
non-duplicated block. The most prominent peak is due to auto-
correlation, i.e., it is located in the exact time position n from
which Bn

m starts. The position of the second highest peak
represents the position of a possible duplication (e.g., at time
ñ). If the second peak is sufficiently high (at least 0.6 times
the first peak in our experiments), we associate a confidence
value to the block Bn

m according to the max/mean ratio

pBn

m

=
max(ct

Bn

m

)
1

(T−1)

∑

t c
t
Bn

m

. (7)

Among the M blocks starting at frame n, the one characterized
by the largest value of pBn

m

is the most likely duplicate can-
didate. To take the final decision, we compare this block with
those starting from the frame whose time index corresponds
to the second peak in ct

Bn

m

(i.e., the blocks Bñ
m, if the second

(a) Tampered frame (b) Detected mask

(c) f1
i,j (d) f2

i,j

Fig. 3: A tampered and compressed frame from [15] (a) whose
tampered region lies inside the red shape, the 2D projection on
(i, j) domain of the estimated tampering location (b), and the 2D
distributions of f1

i,j (c) and f2
i,j (d).

region according to the criteria indicated below. In case none
of the criteria is met, the iteration is terminated when we
reach the smallest acceptable value of H (4 × 4 × 5 in our
experiments).

In principle, each value eti,j = 1 indicates tampering on
that pixel position. However, in order to evaluate which pixels
actually belong to a tampered area, we associate to each pair
of spatial coordinates (i, j) a feature vector Fi,j = [f1

i,j , f
2
i,j].

The two features are computed as follows:

• f1
i,j : this feature is the cardinality of the largest set

of adjacent ones in eti,j along the temporal direction.
It represents the largest number of consecutive frames
possibly tampered in the position (i, j).

• f2
i,j : this feature is the t value from which the largest set

of adjacent ones starts. It represents the starting frame of
the possible tampering of length f1

i,j .

By simply analyzing Fi,j values, we can find the largest
volume of possibly tampered pixels starting from the same
frame. More specifically, we search for the pixel positions
(i, j) with the highest f1

i,j values, and check if they start
from the same time position given by f2

i,j . If this volume is
bigger than a given threshold (set according to the minimum
tampering volume that we want to detect) we detect the
presence of tampering. The tampering localization map is then
built according to the pixels belonging to the detected cluster.
Figure 3 shows a tampered frame, the values of f1

i,j and f2
i,j ,

and the detected tampering mask.

B. Detection of video-based attack

The video-based attack does not leave a characteristic
footprint such as that left by the image-based attack. For this
reason, this kind of attack is not detected by the algorithm de-
scribed in Section III-A. However, in practical situations, it is
customary to replace a video region with another region from

the same sequence (e.g., background copy-move to remove an
object or a person). Hence, we propose a correlation method
similar to that in [14], which aims to find the duplicated
content. Unlike [14], we also detect which are the tampered
frames, without assuming a-priori knowledge, thus moving
from a semi-supervised to a fully unsupervised method.

The main idea of this step is to detect duplicated content in
the 3D domain by cross-correlating small 3D blocks. Indeed,
rather than simply correlating frame regions, we correlate
spatio-temporal portions of X. In order to reduce the com-
putational complexity, yet achieving high accuracy, we resize
the sequence in the spatial domain by a factor or 5, while
retaining the full temporal resolution.

To this end, we first compute the residual matrix R = {rti,j}
of the downscaled sequence according to eq. (2). Analyzing
R rather than X allows us to remove the effect of linear
operations (e.g., brightness adjustment) that may have been
applied to the duplicated block. Then, we split R into non
overlapping 3D blocks Bn

m of size di × dj × dt, where n is
the starting time index of a block, and m ∈ [1,M] is the
block index. We start analyzing all the blocks starting from
a given time instant. If none of these blocks is detected to
be duplicated (according to the method illustrated below), we
analyze the next set of blocks (i.e., we increase the value n).

The detector is based on the phase-correlation between Bn
m

and R as

C
t
i,j(B

n
m) = F−1

(

F(Bn
m)F(R)∗

|F(Bn
m)F(R)∗|

)

, (5)

where F is the Fourier transform operator, and ∗ indicates
the complex conjugate. This 3D correlation computes the
similarity between a selected block Bn

m and the rest of the
sequence. Notice that we make use of phase-correlation since
it is computationally efficient, and in [14] the authors prove
its robustness in detecting duplications. Let us define the
maximum correlation value obtained for each time position
as

ctBn

m

= max
i,j

(

|Ct
i,j(B

n
m)|

)

. (6)

Figure 4 shows the behavior of ct
Bn

m

for a duplicated and a
non-duplicated block. The most prominent peak is due to auto-
correlation, i.e., it is located in the exact time position n from
which Bn

m starts. The position of the second highest peak
represents the position of a possible duplication (e.g., at time
ñ). If the second peak is sufficiently high (at least 0.6 times
the first peak in our experiments), we associate a confidence
value to the block Bn

m according to the max/mean ratio

pBn

m

=
max(ct

Bn

m

)
1

(T−1)

∑

t c
t
Bn

m

. (7)

Among the M blocks starting at frame n, the one characterized
by the largest value of pBn

m

is the most likely duplicate can-
didate. To take the final decision, we compare this block with
those starting from the frame whose time index corresponds
to the second peak in ct

Bn

m

(i.e., the blocks Bñ
m, if the second

Paolo Bestagini

Editing-based footprints: image copy-paste !37

(a) Tampered frame (b) Detected mask

(c) f1
i,j (d) f2

i,j

Fig. 3: A tampered and compressed frame from [15] (a) whose
tampered region lies inside the red shape, the 2D projection on
(i, j) domain of the estimated tampering location (b), and the 2D
distributions of f1

i,j (c) and f2
i,j (d).

region according to the criteria indicated below. In case none
of the criteria is met, the iteration is terminated when we
reach the smallest acceptable value of H (4 × 4 × 5 in our
experiments).

In principle, each value eti,j = 1 indicates tampering on
that pixel position. However, in order to evaluate which pixels
actually belong to a tampered area, we associate to each pair
of spatial coordinates (i, j) a feature vector Fi,j = [f1

i,j , f
2
i,j].

The two features are computed as follows:

• f1
i,j : this feature is the cardinality of the largest set

of adjacent ones in eti,j along the temporal direction.
It represents the largest number of consecutive frames
possibly tampered in the position (i, j).

• f2
i,j : this feature is the t value from which the largest set

of adjacent ones starts. It represents the starting frame of
the possible tampering of length f1

i,j .

By simply analyzing Fi,j values, we can find the largest
volume of possibly tampered pixels starting from the same
frame. More specifically, we search for the pixel positions
(i, j) with the highest f1

i,j values, and check if they start
from the same time position given by f2

i,j . If this volume is
bigger than a given threshold (set according to the minimum
tampering volume that we want to detect) we detect the
presence of tampering. The tampering localization map is then
built according to the pixels belonging to the detected cluster.
Figure 3 shows a tampered frame, the values of f1

i,j and f2
i,j ,

and the detected tampering mask.

B. Detection of video-based attack

The video-based attack does not leave a characteristic
footprint such as that left by the image-based attack. For this
reason, this kind of attack is not detected by the algorithm de-
scribed in Section III-A. However, in practical situations, it is
customary to replace a video region with another region from

the same sequence (e.g., background copy-move to remove an
object or a person). Hence, we propose a correlation method
similar to that in [14], which aims to find the duplicated
content. Unlike [14], we also detect which are the tampered
frames, without assuming a-priori knowledge, thus moving
from a semi-supervised to a fully unsupervised method.

The main idea of this step is to detect duplicated content in
the 3D domain by cross-correlating small 3D blocks. Indeed,
rather than simply correlating frame regions, we correlate
spatio-temporal portions of X. In order to reduce the com-
putational complexity, yet achieving high accuracy, we resize
the sequence in the spatial domain by a factor or 5, while
retaining the full temporal resolution.

To this end, we first compute the residual matrix R = {rti,j}
of the downscaled sequence according to eq. (2). Analyzing
R rather than X allows us to remove the effect of linear
operations (e.g., brightness adjustment) that may have been
applied to the duplicated block. Then, we split R into non
overlapping 3D blocks Bn

m of size di × dj × dt, where n is
the starting time index of a block, and m ∈ [1,M] is the
block index. We start analyzing all the blocks starting from
a given time instant. If none of these blocks is detected to
be duplicated (according to the method illustrated below), we
analyze the next set of blocks (i.e., we increase the value n).

The detector is based on the phase-correlation between Bn
m

and R as

C
t
i,j(B

n
m) = F−1

(

F(Bn
m)F(R)∗

|F(Bn
m)F(R)∗|

)

, (5)

where F is the Fourier transform operator, and ∗ indicates
the complex conjugate. This 3D correlation computes the
similarity between a selected block Bn

m and the rest of the
sequence. Notice that we make use of phase-correlation since
it is computationally efficient, and in [14] the authors prove
its robustness in detecting duplications. Let us define the
maximum correlation value obtained for each time position
as

ctBn

m

= max
i,j

(

|Ct
i,j(B

n
m)|

)

. (6)

Figure 4 shows the behavior of ct
Bn

m

for a duplicated and a
non-duplicated block. The most prominent peak is due to auto-
correlation, i.e., it is located in the exact time position n from
which Bn

m starts. The position of the second highest peak
represents the position of a possible duplication (e.g., at time
ñ). If the second peak is sufficiently high (at least 0.6 times
the first peak in our experiments), we associate a confidence
value to the block Bn

m according to the max/mean ratio

pBn

m

=
max(ct

Bn

m

)
1

(T−1)

∑

t c
t
Bn

m

. (7)

Among the M blocks starting at frame n, the one characterized
by the largest value of pBn

m

is the most likely duplicate can-
didate. To take the final decision, we compare this block with
those starting from the frame whose time index corresponds
to the second peak in ct

Bn

m

(i.e., the blocks Bñ
m, if the second

Paolo Bestagini

Editing-based footprints: image copy-paste

• Problem:
• A video is inserted from the same sequence

Method:
• Implementation of an automatic correlation

analysis to detect local duplication

!38

Paolo Bestagini

Editing-based footprints: image copy-paste

• Problem:
• A video is inserted from the same sequence

Method:
• Implementation of an automatic correlation

analysis to detect local duplication

!38

Paolo Bestagini

Editing-based footprints: image copy-paste !39

ALGORITHM:
!  Compute the residual
!  Divide the residual into non-overlapping 3D blocks
!  Compute the phase correlation

!  Compute the maximum correlation value for each time position

!  Search for peaks indicating duplication by thresholding the max-mean ratio

!  Check if the detected duplicated block is similar to its original version (MSE)

(a) Tampered frame (b) Detected mask

(c) f1
i,j (d) f2

i,j

Fig. 3: A tampered and compressed frame from [15] (a) whose
tampered region lies inside the red shape, the 2D projection on
(i, j) domain of the estimated tampering location (b), and the 2D
distributions of f1

i,j (c) and f2
i,j (d).

region according to the criteria indicated below. In case none
of the criteria is met, the iteration is terminated when we
reach the smallest acceptable value of H (4 × 4 × 5 in our
experiments).

In principle, each value eti,j = 1 indicates tampering on
that pixel position. However, in order to evaluate which pixels
actually belong to a tampered area, we associate to each pair
of spatial coordinates (i, j) a feature vector Fi,j = [f1

i,j , f
2
i,j].

The two features are computed as follows:

• f1
i,j : this feature is the cardinality of the largest set

of adjacent ones in eti,j along the temporal direction.
It represents the largest number of consecutive frames
possibly tampered in the position (i, j).

• f2
i,j : this feature is the t value from which the largest set

of adjacent ones starts. It represents the starting frame of
the possible tampering of length f1

i,j .

By simply analyzing Fi,j values, we can find the largest
volume of possibly tampered pixels starting from the same
frame. More specifically, we search for the pixel positions
(i, j) with the highest f1

i,j values, and check if they start
from the same time position given by f2

i,j . If this volume is
bigger than a given threshold (set according to the minimum
tampering volume that we want to detect) we detect the
presence of tampering. The tampering localization map is then
built according to the pixels belonging to the detected cluster.
Figure 3 shows a tampered frame, the values of f1

i,j and f2
i,j ,

and the detected tampering mask.

B. Detection of video-based attack

The video-based attack does not leave a characteristic
footprint such as that left by the image-based attack. For this
reason, this kind of attack is not detected by the algorithm de-
scribed in Section III-A. However, in practical situations, it is
customary to replace a video region with another region from

the same sequence (e.g., background copy-move to remove an
object or a person). Hence, we propose a correlation method
similar to that in [14], which aims to find the duplicated
content. Unlike [14], we also detect which are the tampered
frames, without assuming a-priori knowledge, thus moving
from a semi-supervised to a fully unsupervised method.

The main idea of this step is to detect duplicated content in
the 3D domain by cross-correlating small 3D blocks. Indeed,
rather than simply correlating frame regions, we correlate
spatio-temporal portions of X. In order to reduce the com-
putational complexity, yet achieving high accuracy, we resize
the sequence in the spatial domain by a factor or 5, while
retaining the full temporal resolution.

To this end, we first compute the residual matrix R = {rti,j}
of the downscaled sequence according to eq. (2). Analyzing
R rather than X allows us to remove the effect of linear
operations (e.g., brightness adjustment) that may have been
applied to the duplicated block. Then, we split R into non
overlapping 3D blocks Bn

m of size di × dj × dt, where n is
the starting time index of a block, and m ∈ [1,M] is the
block index. We start analyzing all the blocks starting from
a given time instant. If none of these blocks is detected to
be duplicated (according to the method illustrated below), we
analyze the next set of blocks (i.e., we increase the value n).

The detector is based on the phase-correlation between Bn
m

and R as

C
t
i,j(B

n
m) = F−1

(

F(Bn
m)F(R)∗

|F(Bn
m)F(R)∗|

)

, (5)

where F is the Fourier transform operator, and ∗ indicates
the complex conjugate. This 3D correlation computes the
similarity between a selected block Bn

m and the rest of the
sequence. Notice that we make use of phase-correlation since
it is computationally efficient, and in [14] the authors prove
its robustness in detecting duplications. Let us define the
maximum correlation value obtained for each time position
as

ctBn

m

= max
i,j

(

|Ct
i,j(B

n
m)|

)

. (6)

Figure 4 shows the behavior of ct
Bn

m

for a duplicated and a
non-duplicated block. The most prominent peak is due to auto-
correlation, i.e., it is located in the exact time position n from
which Bn

m starts. The position of the second highest peak
represents the position of a possible duplication (e.g., at time
ñ). If the second peak is sufficiently high (at least 0.6 times
the first peak in our experiments), we associate a confidence
value to the block Bn

m according to the max/mean ratio

pBn

m

=
max(ct

Bn

m

)
1

(T−1)

∑

t c
t
Bn

m

. (7)

Among the M blocks starting at frame n, the one characterized
by the largest value of pBn

m

is the most likely duplicate can-
didate. To take the final decision, we compare this block with
those starting from the frame whose time index corresponds
to the second peak in ct

Bn

m

(i.e., the blocks Bñ
m, if the second

(a) Tampered frame (b) Detected mask

(c) f1
i,j (d) f2

i,j

Fig. 3: A tampered and compressed frame from [15] (a) whose
tampered region lies inside the red shape, the 2D projection on
(i, j) domain of the estimated tampering location (b), and the 2D
distributions of f1

i,j (c) and f2
i,j (d).

region according to the criteria indicated below. In case none
of the criteria is met, the iteration is terminated when we
reach the smallest acceptable value of H (4 × 4 × 5 in our
experiments).

In principle, each value eti,j = 1 indicates tampering on
that pixel position. However, in order to evaluate which pixels
actually belong to a tampered area, we associate to each pair
of spatial coordinates (i, j) a feature vector Fi,j = [f1

i,j , f
2
i,j].

The two features are computed as follows:

• f1
i,j : this feature is the cardinality of the largest set

of adjacent ones in eti,j along the temporal direction.
It represents the largest number of consecutive frames
possibly tampered in the position (i, j).

• f2
i,j : this feature is the t value from which the largest set

of adjacent ones starts. It represents the starting frame of
the possible tampering of length f1

i,j .

By simply analyzing Fi,j values, we can find the largest
volume of possibly tampered pixels starting from the same
frame. More specifically, we search for the pixel positions
(i, j) with the highest f1

i,j values, and check if they start
from the same time position given by f2

i,j . If this volume is
bigger than a given threshold (set according to the minimum
tampering volume that we want to detect) we detect the
presence of tampering. The tampering localization map is then
built according to the pixels belonging to the detected cluster.
Figure 3 shows a tampered frame, the values of f1

i,j and f2
i,j ,

and the detected tampering mask.

B. Detection of video-based attack

The video-based attack does not leave a characteristic
footprint such as that left by the image-based attack. For this
reason, this kind of attack is not detected by the algorithm de-
scribed in Section III-A. However, in practical situations, it is
customary to replace a video region with another region from

the same sequence (e.g., background copy-move to remove an
object or a person). Hence, we propose a correlation method
similar to that in [14], which aims to find the duplicated
content. Unlike [14], we also detect which are the tampered
frames, without assuming a-priori knowledge, thus moving
from a semi-supervised to a fully unsupervised method.

The main idea of this step is to detect duplicated content in
the 3D domain by cross-correlating small 3D blocks. Indeed,
rather than simply correlating frame regions, we correlate
spatio-temporal portions of X. In order to reduce the com-
putational complexity, yet achieving high accuracy, we resize
the sequence in the spatial domain by a factor or 5, while
retaining the full temporal resolution.

To this end, we first compute the residual matrix R = {rti,j}
of the downscaled sequence according to eq. (2). Analyzing
R rather than X allows us to remove the effect of linear
operations (e.g., brightness adjustment) that may have been
applied to the duplicated block. Then, we split R into non
overlapping 3D blocks Bn

m of size di × dj × dt, where n is
the starting time index of a block, and m ∈ [1,M] is the
block index. We start analyzing all the blocks starting from
a given time instant. If none of these blocks is detected to
be duplicated (according to the method illustrated below), we
analyze the next set of blocks (i.e., we increase the value n).

The detector is based on the phase-correlation between Bn
m

and R as

C
t
i,j(B

n
m) = F−1

(

F(Bn
m)F(R)∗

|F(Bn
m)F(R)∗|

)

, (5)

where F is the Fourier transform operator, and ∗ indicates
the complex conjugate. This 3D correlation computes the
similarity between a selected block Bn

m and the rest of the
sequence. Notice that we make use of phase-correlation since
it is computationally efficient, and in [14] the authors prove
its robustness in detecting duplications. Let us define the
maximum correlation value obtained for each time position
as

ctBn

m

= max
i,j

(

|Ct
i,j(B

n
m)|

)

. (6)

Figure 4 shows the behavior of ct
Bn

m

for a duplicated and a
non-duplicated block. The most prominent peak is due to auto-
correlation, i.e., it is located in the exact time position n from
which Bn

m starts. The position of the second highest peak
represents the position of a possible duplication (e.g., at time
ñ). If the second peak is sufficiently high (at least 0.6 times
the first peak in our experiments), we associate a confidence
value to the block Bn

m according to the max/mean ratio

pBn

m

=
max(ct

Bn

m

)
1

(T−1)

∑

t c
t
Bn

m

. (7)

Among the M blocks starting at frame n, the one characterized
by the largest value of pBn

m

is the most likely duplicate can-
didate. To take the final decision, we compare this block with
those starting from the frame whose time index corresponds
to the second peak in ct

Bn

m

(i.e., the blocks Bñ
m, if the second

(a) Tampered frame (b) Detected mask

(c) f1
i,j (d) f2

i,j

Fig. 3: A tampered and compressed frame from [15] (a) whose
tampered region lies inside the red shape, the 2D projection on
(i, j) domain of the estimated tampering location (b), and the 2D
distributions of f1

i,j (c) and f2
i,j (d).

region according to the criteria indicated below. In case none
of the criteria is met, the iteration is terminated when we
reach the smallest acceptable value of H (4 × 4 × 5 in our
experiments).

In principle, each value eti,j = 1 indicates tampering on
that pixel position. However, in order to evaluate which pixels
actually belong to a tampered area, we associate to each pair
of spatial coordinates (i, j) a feature vector Fi,j = [f1

i,j , f
2
i,j].

The two features are computed as follows:

• f1
i,j : this feature is the cardinality of the largest set

of adjacent ones in eti,j along the temporal direction.
It represents the largest number of consecutive frames
possibly tampered in the position (i, j).

• f2
i,j : this feature is the t value from which the largest set

of adjacent ones starts. It represents the starting frame of
the possible tampering of length f1

i,j .

By simply analyzing Fi,j values, we can find the largest
volume of possibly tampered pixels starting from the same
frame. More specifically, we search for the pixel positions
(i, j) with the highest f1

i,j values, and check if they start
from the same time position given by f2

i,j . If this volume is
bigger than a given threshold (set according to the minimum
tampering volume that we want to detect) we detect the
presence of tampering. The tampering localization map is then
built according to the pixels belonging to the detected cluster.
Figure 3 shows a tampered frame, the values of f1

i,j and f2
i,j ,

and the detected tampering mask.

B. Detection of video-based attack

The video-based attack does not leave a characteristic
footprint such as that left by the image-based attack. For this
reason, this kind of attack is not detected by the algorithm de-
scribed in Section III-A. However, in practical situations, it is
customary to replace a video region with another region from

the same sequence (e.g., background copy-move to remove an
object or a person). Hence, we propose a correlation method
similar to that in [14], which aims to find the duplicated
content. Unlike [14], we also detect which are the tampered
frames, without assuming a-priori knowledge, thus moving
from a semi-supervised to a fully unsupervised method.

The main idea of this step is to detect duplicated content in
the 3D domain by cross-correlating small 3D blocks. Indeed,
rather than simply correlating frame regions, we correlate
spatio-temporal portions of X. In order to reduce the com-
putational complexity, yet achieving high accuracy, we resize
the sequence in the spatial domain by a factor or 5, while
retaining the full temporal resolution.

To this end, we first compute the residual matrix R = {rti,j}
of the downscaled sequence according to eq. (2). Analyzing
R rather than X allows us to remove the effect of linear
operations (e.g., brightness adjustment) that may have been
applied to the duplicated block. Then, we split R into non
overlapping 3D blocks Bn

m of size di × dj × dt, where n is
the starting time index of a block, and m ∈ [1,M] is the
block index. We start analyzing all the blocks starting from
a given time instant. If none of these blocks is detected to
be duplicated (according to the method illustrated below), we
analyze the next set of blocks (i.e., we increase the value n).

The detector is based on the phase-correlation between Bn
m

and R as

C
t
i,j(B

n
m) = F−1

(

F(Bn
m)F(R)∗

|F(Bn
m)F(R)∗|

)

, (5)

where F is the Fourier transform operator, and ∗ indicates
the complex conjugate. This 3D correlation computes the
similarity between a selected block Bn

m and the rest of the
sequence. Notice that we make use of phase-correlation since
it is computationally efficient, and in [14] the authors prove
its robustness in detecting duplications. Let us define the
maximum correlation value obtained for each time position
as

ctBn

m

= max
i,j

(

|Ct
i,j(B

n
m)|

)

. (6)

Figure 4 shows the behavior of ct
Bn

m

for a duplicated and a
non-duplicated block. The most prominent peak is due to auto-
correlation, i.e., it is located in the exact time position n from
which Bn

m starts. The position of the second highest peak
represents the position of a possible duplication (e.g., at time
ñ). If the second peak is sufficiently high (at least 0.6 times
the first peak in our experiments), we associate a confidence
value to the block Bn

m according to the max/mean ratio

pBn

m

=
max(ct

Bn

m

)
1

(T−1)

∑

t c
t
Bn

m

. (7)

Among the M blocks starting at frame n, the one characterized
by the largest value of pBn

m

is the most likely duplicate can-
didate. To take the final decision, we compare this block with
those starting from the frame whose time index corresponds
to the second peak in ct

Bn

m

(i.e., the blocks Bñ
m, if the second

(a) Tampered frame (b) Detected mask

(c) f1
i,j (d) f2

i,j

Fig. 3: A tampered and compressed frame from [15] (a) whose
tampered region lies inside the red shape, the 2D projection on
(i, j) domain of the estimated tampering location (b), and the 2D
distributions of f1

i,j (c) and f2
i,j (d).

region according to the criteria indicated below. In case none
of the criteria is met, the iteration is terminated when we
reach the smallest acceptable value of H (4 × 4 × 5 in our
experiments).

In principle, each value eti,j = 1 indicates tampering on
that pixel position. However, in order to evaluate which pixels
actually belong to a tampered area, we associate to each pair
of spatial coordinates (i, j) a feature vector Fi,j = [f1

i,j , f
2
i,j].

The two features are computed as follows:

• f1
i,j : this feature is the cardinality of the largest set

of adjacent ones in eti,j along the temporal direction.
It represents the largest number of consecutive frames
possibly tampered in the position (i, j).

• f2
i,j : this feature is the t value from which the largest set

of adjacent ones starts. It represents the starting frame of
the possible tampering of length f1

i,j .

By simply analyzing Fi,j values, we can find the largest
volume of possibly tampered pixels starting from the same
frame. More specifically, we search for the pixel positions
(i, j) with the highest f1

i,j values, and check if they start
from the same time position given by f2

i,j . If this volume is
bigger than a given threshold (set according to the minimum
tampering volume that we want to detect) we detect the
presence of tampering. The tampering localization map is then
built according to the pixels belonging to the detected cluster.
Figure 3 shows a tampered frame, the values of f1

i,j and f2
i,j ,

and the detected tampering mask.

B. Detection of video-based attack

The video-based attack does not leave a characteristic
footprint such as that left by the image-based attack. For this
reason, this kind of attack is not detected by the algorithm de-
scribed in Section III-A. However, in practical situations, it is
customary to replace a video region with another region from

the same sequence (e.g., background copy-move to remove an
object or a person). Hence, we propose a correlation method
similar to that in [14], which aims to find the duplicated
content. Unlike [14], we also detect which are the tampered
frames, without assuming a-priori knowledge, thus moving
from a semi-supervised to a fully unsupervised method.

The main idea of this step is to detect duplicated content in
the 3D domain by cross-correlating small 3D blocks. Indeed,
rather than simply correlating frame regions, we correlate
spatio-temporal portions of X. In order to reduce the com-
putational complexity, yet achieving high accuracy, we resize
the sequence in the spatial domain by a factor or 5, while
retaining the full temporal resolution.

To this end, we first compute the residual matrix R = {rti,j}
of the downscaled sequence according to eq. (2). Analyzing
R rather than X allows us to remove the effect of linear
operations (e.g., brightness adjustment) that may have been
applied to the duplicated block. Then, we split R into non
overlapping 3D blocks Bn

m of size di × dj × dt, where n is
the starting time index of a block, and m ∈ [1,M] is the
block index. We start analyzing all the blocks starting from
a given time instant. If none of these blocks is detected to
be duplicated (according to the method illustrated below), we
analyze the next set of blocks (i.e., we increase the value n).

The detector is based on the phase-correlation between Bn
m

and R as

C
t
i,j(B

n
m) = F−1

(

F(Bn
m)F(R)∗

|F(Bn
m)F(R)∗|

)

, (5)

where F is the Fourier transform operator, and ∗ indicates
the complex conjugate. This 3D correlation computes the
similarity between a selected block Bn

m and the rest of the
sequence. Notice that we make use of phase-correlation since
it is computationally efficient, and in [14] the authors prove
its robustness in detecting duplications. Let us define the
maximum correlation value obtained for each time position
as

ctBn

m

= max
i,j

(

|Ct
i,j(B

n
m)|

)

. (6)

Figure 4 shows the behavior of ct
Bn

m

for a duplicated and a
non-duplicated block. The most prominent peak is due to auto-
correlation, i.e., it is located in the exact time position n from
which Bn

m starts. The position of the second highest peak
represents the position of a possible duplication (e.g., at time
ñ). If the second peak is sufficiently high (at least 0.6 times
the first peak in our experiments), we associate a confidence
value to the block Bn

m according to the max/mean ratio

pBn

m

=
max(ct

Bn

m

)
1

(T−1)

∑

t c
t
Bn

m

. (7)

Among the M blocks starting at frame n, the one characterized
by the largest value of pBn

m

is the most likely duplicate can-
didate. To take the final decision, we compare this block with
those starting from the frame whose time index corresponds
to the second peak in ct

Bn

m

(i.e., the blocks Bñ
m, if the second

50 100 150 200
0

0.5

1

ct B
n m

t

non-duplicated
duplicated

Fig. 4: Values of ctBn

m

normalized between 0 and 1 for a non-
duplicated block (blue), and for a duplicated one (red). The dashed
line represent the t value from which B

n
m starts. When the block is

duplicated, a second prominent peak appears and pBn

m
assumes an

higher value.

peak is located at ñ). Duplication is detected if a matching
block is detected, i.e.,

argmin
m̃

MSE(Bn
m,Bñ

m̃) < τ (8)

where MSE(·, ·) computes the mean square error between two
blocks and τ is a user-defined threshold to tune the tradeoff
between false positives and false negatives. Otherwise, if the
condition in (8) is not satisfied, we move to the next value of
n (i.e., the next set of blocks) and iterate the process until the
whole sequence is scanned. If no duplication is detected, it
is possible to chose a different scale value for the downsized
sequence, resize it, and repeat the analysis. However, in our
experiment this step was never necessary.

IV. RESULTS

In order to validate the proposed algorithm we tested it on
120 realistic sequences with resolution of 320 × 240 pixels
and of approximatively 300 frames each1. As it concerns the
image-based attack, we used

• 10 sequences from [15], divided in 5 original ones and
their 5 forged versions using the image-based attack.

• 30 sequences obtained re-encoding the 10 sequences from
[15] with H.264/AVC with Quantization Parameters (QP)
in {10, 15, 20} and GOP = 150 (i.e., a difficult scenario
in which the residual is often set to zero because of the
presence of many predicted frames).

As it regards the video-based attack, we used

• 20 sequences, divided in 10 original and their 10 versions
forged by us using the video-based attack.

• 60 sequences obtained re-encoding the 20 above
mentioned sequences with H.264/AVC with QP in
{10, 20, 30} and GOP = 150.

Notice that we re-encoded the sequences to test the detector
robustness to coding. Indeed the original and the forged videos
are only slightly compressed at the origin, setting the codec
to achieve high quality. For this reason we refer to the set
of sequences not specifically re-compressed by us as not re-

compressed sequences.

1A preview of original and forged sequences is available at:
http://youtu.be/45J 092rpD0.

0 0.5 1
0

0.5

1

false positives

tr
ue

po
si

ti
ve

s

AUC = 0.92

AUC = 1

(a) image-based attack

0 0.5 1
0

0.5

1

false positives

tr
ue

po
si

ti
ve

s

AUC = 0.95

AUC = 0.91

(b) video-based attack

Fig. 5: ROC curves and AUC values for tampering detection on
videos forged with both the image-based attack (a), and the video-
based one (b). Blue line represents the ROC computed only on not
re-compressed sequences, while the red curve represents the ROC
curve computed on all the sequences.

A. Results on image-based attack

To validate the detector in this scenario, we tested it on the
40 sequences described above to this purpose. Since this kind
of tampering detection is based on a threshold, we built a Re-
ceiver Operating Characteristic (ROC) curve testing different
threshold values. Figure 5a shows the ROC curves when the
detector is used on the 10 not re-compressed sequences from
[15] (blue), and when they are also re-compressed (red). We
notice that the footprint left by the forgery is quite evident
on not re-compressed sequences. Indeed, not re-compressed
original sequences rarely exhibit a zero-valued residual. For
this reason the Area Under the Curve (AUC) for this case is
1, which means perfect detection accuracy. On the other hand,
as expected, if the sequences are re-compressed, the AUC
decreases, since it is possible to detect original sequences as
forged and vice-versa. However, results are still good, showing
AUC = 0.92.

As it regards tampering localization, we computed on the
first forged frame the amount of pixels detected as tampered
for sequences correctly detected as forged. To this purpose,
Table I shows the values of True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN) rates for
different amount of compressions (i.e., different QP) averaged
for different sequences. TP rate is computed as the number
of pixel correctly identified as forged, normalized on the real
number of forged pixels. TN rate is computed as the number
of pixels detected as not-forged, normalized on the number
of actually not-forged pixels. Notice that the high TN rate
denotes that our detector correctly identifies not-forged pixels
with high probability. On the other hand, TP rate indicates that
some tampered pixels are not identified. However, for not re-
compressed sequences, the 75% of forged pixels is correctly
detected.

B. Results on video-based attack

To test the detector against the video-based attack, we
used the described dataset of 80 sequences. Since even this
detector final decision is based on a threshold, Figure 5b shows
the ROC curves for the detector tested only on the not re-
compressed sequences and tested on all the sequences. Also

(a) Tampered frame (b) Detected mask

(c) f1
i,j (d) f2

i,j

Fig. 3: A tampered and compressed frame from [15] (a) whose
tampered region lies inside the red shape, the 2D projection on
(i, j) domain of the estimated tampering location (b), and the 2D
distributions of f1

i,j (c) and f2
i,j (d).

region according to the criteria indicated below. In case none
of the criteria is met, the iteration is terminated when we
reach the smallest acceptable value of H (4 × 4 × 5 in our
experiments).

In principle, each value eti,j = 1 indicates tampering on
that pixel position. However, in order to evaluate which pixels
actually belong to a tampered area, we associate to each pair
of spatial coordinates (i, j) a feature vector Fi,j = [f1

i,j , f
2
i,j].

The two features are computed as follows:

• f1
i,j : this feature is the cardinality of the largest set

of adjacent ones in eti,j along the temporal direction.
It represents the largest number of consecutive frames
possibly tampered in the position (i, j).

• f2
i,j : this feature is the t value from which the largest set

of adjacent ones starts. It represents the starting frame of
the possible tampering of length f1

i,j .

By simply analyzing Fi,j values, we can find the largest
volume of possibly tampered pixels starting from the same
frame. More specifically, we search for the pixel positions
(i, j) with the highest f1

i,j values, and check if they start
from the same time position given by f2

i,j . If this volume is
bigger than a given threshold (set according to the minimum
tampering volume that we want to detect) we detect the
presence of tampering. The tampering localization map is then
built according to the pixels belonging to the detected cluster.
Figure 3 shows a tampered frame, the values of f1

i,j and f2
i,j ,

and the detected tampering mask.

B. Detection of video-based attack

The video-based attack does not leave a characteristic
footprint such as that left by the image-based attack. For this
reason, this kind of attack is not detected by the algorithm de-
scribed in Section III-A. However, in practical situations, it is
customary to replace a video region with another region from

the same sequence (e.g., background copy-move to remove an
object or a person). Hence, we propose a correlation method
similar to that in [14], which aims to find the duplicated
content. Unlike [14], we also detect which are the tampered
frames, without assuming a-priori knowledge, thus moving
from a semi-supervised to a fully unsupervised method.

The main idea of this step is to detect duplicated content in
the 3D domain by cross-correlating small 3D blocks. Indeed,
rather than simply correlating frame regions, we correlate
spatio-temporal portions of X. In order to reduce the com-
putational complexity, yet achieving high accuracy, we resize
the sequence in the spatial domain by a factor or 5, while
retaining the full temporal resolution.

To this end, we first compute the residual matrix R = {rti,j}
of the downscaled sequence according to eq. (2). Analyzing
R rather than X allows us to remove the effect of linear
operations (e.g., brightness adjustment) that may have been
applied to the duplicated block. Then, we split R into non
overlapping 3D blocks Bn

m of size di × dj × dt, where n is
the starting time index of a block, and m ∈ [1,M] is the
block index. We start analyzing all the blocks starting from
a given time instant. If none of these blocks is detected to
be duplicated (according to the method illustrated below), we
analyze the next set of blocks (i.e., we increase the value n).

The detector is based on the phase-correlation between Bn
m

and R as

C
t
i,j(B

n
m) = F−1

(

F(Bn
m)F(R)∗

|F(Bn
m)F(R)∗|

)

, (5)

where F is the Fourier transform operator, and ∗ indicates
the complex conjugate. This 3D correlation computes the
similarity between a selected block Bn

m and the rest of the
sequence. Notice that we make use of phase-correlation since
it is computationally efficient, and in [14] the authors prove
its robustness in detecting duplications. Let us define the
maximum correlation value obtained for each time position
as

ctBn

m

= max
i,j

(

|Ct
i,j(B

n
m)|

)

. (6)

Figure 4 shows the behavior of ct
Bn

m

for a duplicated and a
non-duplicated block. The most prominent peak is due to auto-
correlation, i.e., it is located in the exact time position n from
which Bn

m starts. The position of the second highest peak
represents the position of a possible duplication (e.g., at time
ñ). If the second peak is sufficiently high (at least 0.6 times
the first peak in our experiments), we associate a confidence
value to the block Bn

m according to the max/mean ratio

pBn

m

=
max(ct

Bn

m

)
1

(T−1)

∑

t c
t
Bn

m

. (7)

Among the M blocks starting at frame n, the one characterized
by the largest value of pBn

m

is the most likely duplicate can-
didate. To take the final decision, we compare this block with
those starting from the frame whose time index corresponds
to the second peak in ct

Bn

m

(i.e., the blocks Bñ
m, if the second

Algorithm:

Paolo Bestagini

Editing-based footprints: image copy-paste !40

Fig. 6: Examples of block duplication detection for 3 sequences.
Original (left), forged (middle), and frames with duplicated blocks
(right). The red shape highlights a detected duplication.

B. Results on video-based attack

To test the detector against the video-based attack, we
used the described dataset of 80 sequences. Since even this
detector final decision is based on a threshold, Figure 5b shows
the ROC curves for the detector tested only on the not re-
compressed sequences and tested on all the sequences. Also
in this case, we notice that introducing a compression step
after the forgery, makes the detection more difficult. However,
the AUC remains as high as 0.91 in the worst case.

As it regards temporal tampering localization, we computed
for forged sequences, if the block detected as most likely
duplicated was actually a duplicated block according to the
ground truth. Figure 6 shows some examples. On the left the
original frames of 3 sequences, in the middle the tampered
version of these frames, and on the right the frames in which
the duplicated block is present. The red shape identifies the
spatial boundary of the detected duplicated block. When not
re-compressed sequences are concerned, the detector correctly
identifies a duplicated block on 90% of the sequences. If
we consider also the re-compressed videos, the percentage
of correctly detected blocks decreases to 87%. It is worth
to notice that the tampering localization fails only when the
duplicated block is not correctly identified.

Moreover, since the tampered sequences used in this paper
often present small forged areas, the global correlation pro-
posed in [14] that is less time consuming than our algorithm
often fails. For this reason a comparison on these sequences
would not be fair.

V. CONCLUSIONS

In this paper we presented an algorithm for local tampering
detection and localization in video sequences, taking into
consideration two different kinds of attacks. We also validated
our algorithm on realistic forged video sequences, in order to
prove that it achieves high accuracy in a real working scenario.

Some of the forged sequences that we used have been
produced by us, the others come from the SULFA dataset
presented in [15]. Since we recognize that producing realistic
forgeries may be time consuming, we contributed to this public
dataset, releasing our forged sequences too.

Future works may target the detection of other possible
attacks. As an example, we should consider more complex
video inpainting techniques. Moreover, we should study the
possibility of developing antiforensics techniques that aims to
reduce the detector accuracy.

ACKNOWLEDGMENT

This work was supported by the REWIND Project funded
by the Future and Emerging Technologies (FET) programme
within the Seventh Framework Programme (FP7) of the Eu-
ropean Commission, under FET-Open grant number: 268478.

REFERENCES

[1] R. Poisel and S. Tjoa, “Forensics investigations of multimedia data: A
review of the state-of-the-art,” in IT Security Incident Management and
IT Forensics (IMF), 2011 Sixth International Conference on, 2011.

[2] H. T. Sencar and N. Memon, Overview of State-of-the-art in Digital
Image Forensics, Part of Indian Statistical Institute Platinum Jubilee
Monograph series titled ’Statistical Science and Interdisciplinary Re-
search,’. World Scientific Press, 2008.

[3] A. Piva, “An overview on image forensics,” ISRN Signal Processing,
vol. 2013, p. 22, 2013.

[4] S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva, M. Tagliasacchi,
and S. Tubaro, “An overview on video forensics,” APSIPA Transactions
on Signal and Information Processing, vol. 1, p. e2, 2012.

[5] S. Milani, P. Bestagini, M. Tagliasacchi, and S. Tubaro, “Multiple com-
pression detection for video sequences,” in 2012 IEEE 14th International
Workshop on Multimedia Signal Processing (MMSP), 2012.

[6] P. Bestagini, A. Allam, S. Milani, M. Tagliasacchi, and S. Tubaro,
“Video codec identification,” in 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2012.

[7] D. Vazquez-Padin, M. Fontani, T. Bianchi, P. Comesana, A. Piva, and
M. Barni, “Detection of video double encoding with GOP size estima-
tion,” in 2012 IEEE International Workshop on Information Forensics
and Security (WIFS), 2012.

[8] M. Visentini-Scarzanella and P. L. Dragotti, “Video jitter analysis for
automatic bootleg detection,” in 2012 IEEE 14th International Workshop
on Multimedia Signal Processing (MMSP), 2012.

[9] P. Bestagini, M. Visentini-Scarzanella, M. Tagliasacchi, P. Dragotti,
and S. Tubaro, “Video recapture detection based on ghosting artifact
analysis,” in 2013 IEEE International Conference on Image Processing
(ICIP), 2013.

[10] P. Bestagini, S. Battaglia, S. Milani, M. Tagliasacchi, and S. Tubaro,
“Detection of temporal interpolation in video sequences,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2013.

[11] C.-C. Hsu, T.-Y. Hung, C.-W. Lin, and C.-T. Hsu, “Video forgery detec-
tion using correlation of noise residue,” in 2008 IEEE 10th Workshop
on Multimedia Signal Processing, 2008.

[12] A. Subramanyam and S. Emmanuel, “Video forgery detection using
HOG features and compression properties,” in 2012 IEEE 14th Interna-
tional Workshop on Multimedia Signal Processing (MMSP), 2012.

[13] M. Kobayashi, T. Okabe, and Y. Sato, “Detecting forgery from static-
scene video based on inconsistency in noise level functions,” IEEE
Transactions on Information Forensics and Security, vol. 5, pp. 883–
892, 2010.

[14] W. Wang and H. Farid, “Exposing digital forgeries in video by detecting
duplication,” in Proceedings of the 9th workshop on Multimedia &
security, 2007.

[15] G. Qadir, S. Yahaya, and A. T. S. Ho, “Surrey university library for
forensic analysis (SULFA) of video content,” in IET Conference on
Image Processing (IPR 2012), 2012.

original forged detected duplication

Paolo Bestagini

Editing-based footprints: image copy-paste

• Problem:
• A video is inserted from the same a different sequence at with

different frame-rate

• Method:
• Search for traces left by frame-rate equalisation
• Up-sampling and down-sampling leave a characteristic pixel

correlation in time

!41

t1 t2 t3 t1+Δt t2+Δt

Fig. 1: Trajectory of interpolated pixels across frames when
motion compensation is performed (continuous arrow) and
when it is not (dashed arrow).

sion broadcasts. Finally, in Section 4, we draw some conclu-
sions and present the possible future works.

2. DETECTOR

Let us consider an original video sequence X, whose frames
are denoted as X(t), t = 1, 2, ..., T . Let us now consider the
case in which the frame rate of this sequence is changed, scal-
ing the original rate by a factor ω. The resulting interpolated
sequence is then Xω, and its frames are denoted as Xω(ωt).
If ω < 1 the sequence is upsampled, and new frames are
created at non integer values ωt. If ω > 1 the sequence is
downsampled, and this leads to two different situations. For
non-integer values of ω > 1, the sequence is first upsam-
pled and then some frames are dropped. For integer values
of ω > 1, frame-rate change consists in a simple frame drop-
ping. Since this last operation does modify frames, it cannot
be detected, and we do not consider this case.

In the other cases we consider, upsampling is the common
operation. Let us then analyze its effect. In the simplest case,
frames Xω at non-integer positions ωt can be computed by
simply interpolating the 2K neighboring frames pixel-wise
as

Xω
ij(ωt) =

K
∑

k=−K

hk ·X0
ij(ωt+ ωk),

where h is the interpolation filter (i.e., a 1-dimensional low-
pass filter), i and j denote the spatial pixel position in a frame,
and X0 is the original sequence defined on the support of the
interpolated one, such that

X0(ωt) =

{

X(ωt) if ωt is an integer

0 otherwise

In doing this operation, a correlation between pixels in the
same spatial position but different time instants is introduced
by the filter. As shown in [5], by simply using a predefined
analysis filter h∗, one may compute the prediction error as

eij(ωt) = Xω
ij(ωt)− X̂ω

ij(ωt)

= Xω
ij(ωt)−

K
∑

k=−K

h∗
k ·X

ω
ij(ωt+ ωk), h∗

0 = 0.

It is possible to prove that the variance of this prediction er-
ror is periodic [6, 7, 8], and its periodicity depends only on
the interpolation factor ω, and not on the analysis filter h∗.
By exploiting this property, the interpolation factor can be di-
rectly inferred by looking at the error periodicity. Figure 2
shows this periodic error for an original sequence (top), and
the interpolated version (middle). Last row shows how the
periodicity can be inferred by looking at the error spectrum.

However, in a more realistic scenario, interpolation be-
tween frames is not obtained applying such a simple proce-
dure, but motion is taken into account to avoid annoying tem-
poral artifacts due to moving objects (e.g., ghosting). In order
to obtain frames Xω at non-integer positions ωt, neighboring
frames X(t ± i), i = 1, ..., I , are motion-compensated be-
fore being interpolated. Figure 1 shows an example of motion
compensated interpolation: when ω = 0.5 dashed frames are
the interpolated ones. If motion compensation is performed
before interpolation, the pixels filtered to obtain the interpo-
lated ones lie on the trajectory followed by the block and de-
picted by the solid arrow. On the other hand, if no motion-
compensation is performed, the filtered pixels are those along
the dashed arrow (all in the same spatial position for each
time instant). When motion compensation is performed, the
resulting sequence is

Xω
ij(ωt) =

K
∑

k=−K

hk ·X
0
mt,i,jnt,i,j

(ωt+ ωk),

where now the spatial indexes mt,i,j and nt,i,j change in each
frame for each pixel position (i, j), in order to follow motion
estimated trajectories in time.

In this scenario, the method in [5] can not be directly ap-
plied to pixels in position i and j, but motion should be com-
pensated. This can be done by performing motion estimation
on the interpolated sequence. Even if the estimated motion
vectors (MV) do not coincide with those computed on the
original sequence, they are likely to be very similar. In this
way the values of mt,i,j and nt,i,j for each frame can be ob-
tained directly from MVs.

The detector we propose can be then summarized in the
following steps:

• Compute mt,i,j and nt,i,j from MVs estimated by per-
forming motion estimation between adjacent frames.

• Compute the prediction error as

eij(ωt) = Xω
ij(ωt)−

K
∑

k=−K

h∗
k ·X

ω
mt,i,jnt,i,j

(ωt+ωk),

using the filter h∗ whose only coefficients different
from zero are h∗

±1 = 0.5.

• Compute the squared error for each frame as

e(ωt) =
∑

ij

|eij(ωt)|
2.

Paolo Bestagini

Editing-based footprints: image copy-paste !42

!  Estimate each frame from their neighbors
!  Compute motion vectors
!  Average frames

!  Compute the prediction error

•  Original frames " high error
•  Predicted frames " low error

!  Estimate error periodicity (spectral analysis)

•  If non-periodic " not interpolated
•  If periodic " interpolated

Fig. 1: Trajectory of interpolated pixels across frames when
motion compensation is performed (continuous arrow) and
when it is not (dashed arrow).

sion broadcasts. Finally, in Section 4, we draw some conclu-
sions and present the possible future works.

2. DETECTOR

Let us consider an original video sequence X, whose frames
are denoted as X(t), t = 1, 2, ..., T . Let us now consider the
case in which the frame rate of this sequence is changed, scal-
ing the original rate by a factor ω. The resulting interpolated
sequence is then Xω, and its frames are denoted as Xω(ωt).
If ω < 1 the sequence is upsampled, and new frames are
created at non integer values ωt. If ω > 1 the sequence is
downsampled, and this leads to two different situations. For
non-integer values of ω > 1, the sequence is first upsam-
pled and then some frames are dropped. For integer values
of ω > 1, frame-rate change consists in a simple frame drop-
ping. Since this last operation does modify frames, it cannot
be detected, and we do not consider this case.

In the other cases we consider, upsampling is the common
operation. Let us then analyze its effect. In the simplest case,
frames Xω at non-integer positions ωt can be computed by
simply interpolating the 2K neighboring frames pixel-wise
as

Xω
ij(ωt) =

K
∑

k=−K

hk ·X0
ij(ωt+ ωk),

where h is the interpolation filter (i.e., a 1-dimensional low-
pass filter), i and j denote the spatial pixel position in a frame,
and X0 is the original sequence defined on the support of the
interpolated one, such that

X0(ωt) =

{

X(ωt) if ωt is an integer

0 otherwise

In doing this operation, a correlation between pixels in the
same spatial position but different time instants is introduced
by the filter. As shown in [5], by simply using a predefined
analysis filter h∗, one may compute the prediction error as

eij(ωt) = Xω
ij(ωt)− X̂ω

ij(ωt)

= Xω
ij(ωt)−

K
∑

k=−K

h∗
k ·X

ω
ij(ωt+ ωk), h∗

0 = 0.

It is possible to prove that the variance of this prediction er-
ror is periodic [6, 7, 8], and its periodicity depends only on
the interpolation factor ω, and not on the analysis filter h∗.
By exploiting this property, the interpolation factor can be di-
rectly inferred by looking at the error periodicity. Figure 2
shows this periodic error for an original sequence (top), and
the interpolated version (middle). Last row shows how the
periodicity can be inferred by looking at the error spectrum.

However, in a more realistic scenario, interpolation be-
tween frames is not obtained applying such a simple proce-
dure, but motion is taken into account to avoid annoying tem-
poral artifacts due to moving objects (e.g., ghosting). In order
to obtain frames Xω at non-integer positions ωt, neighboring
frames X(t ± i), i = 1, ..., I , are motion-compensated be-
fore being interpolated. Figure 1 shows an example of motion
compensated interpolation: when ω = 0.5 dashed frames are
the interpolated ones. If motion compensation is performed
before interpolation, the pixels filtered to obtain the interpo-
lated ones lie on the trajectory followed by the block and de-
picted by the solid arrow. On the other hand, if no motion-
compensation is performed, the filtered pixels are those along
the dashed arrow (all in the same spatial position for each
time instant). When motion compensation is performed, the
resulting sequence is

Xω
ij(ωt) =

K
∑

k=−K

hk ·X
0
mt,i,jnt,i,j

(ωt+ ωk),

where now the spatial indexes mt,i,j and nt,i,j change in each
frame for each pixel position (i, j), in order to follow motion
estimated trajectories in time.

In this scenario, the method in [5] can not be directly ap-
plied to pixels in position i and j, but motion should be com-
pensated. This can be done by performing motion estimation
on the interpolated sequence. Even if the estimated motion
vectors (MV) do not coincide with those computed on the
original sequence, they are likely to be very similar. In this
way the values of mt,i,j and nt,i,j for each frame can be ob-
tained directly from MVs.

The detector we propose can be then summarized in the
following steps:

• Compute mt,i,j and nt,i,j from MVs estimated by per-
forming motion estimation between adjacent frames.

• Compute the prediction error as

eij(ωt) = Xω
ij(ωt)−

K
∑

k=−K

h∗
k ·X

ω
mt,i,jnt,i,j

(ωt+ωk),

using the filter h∗ whose only coefficients different
from zero are h∗

±1 = 0.5.

• Compute the squared error for each frame as

e(ωt) =
∑

ij

|eij(ωt)|
2.

Estimated MVs Analysis filter

Fig. 1: Trajectory of interpolated pixels across frames when
motion compensation is performed (continuous arrow) and
when it is not (dashed arrow).

sion broadcasts. Finally, in Section 4, we draw some conclu-
sions and present the possible future works.

2. DETECTOR

Let us consider an original video sequence X, whose frames
are denoted as X(t), t = 1, 2, ..., T . Let us now consider the
case in which the frame rate of this sequence is changed, scal-
ing the original rate by a factor ω. The resulting interpolated
sequence is then Xω, and its frames are denoted as Xω(ωt).
If ω < 1 the sequence is upsampled, and new frames are
created at non integer values ωt. If ω > 1 the sequence is
downsampled, and this leads to two different situations. For
non-integer values of ω > 1, the sequence is first upsam-
pled and then some frames are dropped. For integer values
of ω > 1, frame-rate change consists in a simple frame drop-
ping. Since this last operation does modify frames, it cannot
be detected, and we do not consider this case.

In the other cases we consider, upsampling is the common
operation. Let us then analyze its effect. In the simplest case,
frames Xω at non-integer positions ωt can be computed by
simply interpolating the 2K neighboring frames pixel-wise
as

Xω
ij(ωt) =

K
∑

k=−K

hk ·X0
ij(ωt+ ωk),

where h is the interpolation filter (i.e., a 1-dimensional low-
pass filter), i and j denote the spatial pixel position in a frame,
and X0 is the original sequence defined on the support of the
interpolated one, such that

X0(ωt) =

{

X(ωt) if ωt is an integer

0 otherwise

In doing this operation, a correlation between pixels in the
same spatial position but different time instants is introduced
by the filter. As shown in [5], by simply using a predefined
analysis filter h∗, one may compute the prediction error as

eij(ωt) = Xω
ij(ωt)− X̂ω

ij(ωt)

= Xω
ij(ωt)−

K
∑

k=−K

h∗
k ·X

ω
ij(ωt+ ωk), h∗

0 = 0.

It is possible to prove that the variance of this prediction er-
ror is periodic [6, 7, 8], and its periodicity depends only on
the interpolation factor ω, and not on the analysis filter h∗.
By exploiting this property, the interpolation factor can be di-
rectly inferred by looking at the error periodicity. Figure 2
shows this periodic error for an original sequence (top), and
the interpolated version (middle). Last row shows how the
periodicity can be inferred by looking at the error spectrum.

However, in a more realistic scenario, interpolation be-
tween frames is not obtained applying such a simple proce-
dure, but motion is taken into account to avoid annoying tem-
poral artifacts due to moving objects (e.g., ghosting). In order
to obtain frames Xω at non-integer positions ωt, neighboring
frames X(t ± i), i = 1, ..., I , are motion-compensated be-
fore being interpolated. Figure 1 shows an example of motion
compensated interpolation: when ω = 0.5 dashed frames are
the interpolated ones. If motion compensation is performed
before interpolation, the pixels filtered to obtain the interpo-
lated ones lie on the trajectory followed by the block and de-
picted by the solid arrow. On the other hand, if no motion-
compensation is performed, the filtered pixels are those along
the dashed arrow (all in the same spatial position for each
time instant). When motion compensation is performed, the
resulting sequence is

Xω
ij(ωt) =

K
∑

k=−K

hk ·X
0
mt,i,jnt,i,j

(ωt+ ωk),

where now the spatial indexes mt,i,j and nt,i,j change in each
frame for each pixel position (i, j), in order to follow motion
estimated trajectories in time.

In this scenario, the method in [5] can not be directly ap-
plied to pixels in position i and j, but motion should be com-
pensated. This can be done by performing motion estimation
on the interpolated sequence. Even if the estimated motion
vectors (MV) do not coincide with those computed on the
original sequence, they are likely to be very similar. In this
way the values of mt,i,j and nt,i,j for each frame can be ob-
tained directly from MVs.

The detector we propose can be then summarized in the
following steps:

• Compute mt,i,j and nt,i,j from MVs estimated by per-
forming motion estimation between adjacent frames.

• Compute the prediction error as

eij(ωt) = Xω
ij(ωt)−

K
∑

k=−K

h∗
k ·X

ω
mt,i,jnt,i,j

(ωt+ωk),

using the filter h∗ whose only coefficients different
from zero are h∗

±1 = 0.5.

• Compute the squared error for each frame as

e(ωt) =
∑

ij

|eij(ωt)|
2.

Algorithm:

Paolo Bestagini

Editing-based footprints: image copy-paste !43

Fps: 30 !90

0 20 40 60 80 100
0

1

2
x�10

6

replacements

frames

e
(ω

t)

0 20 40 60 80 100
0

1

2
x�10

6

frames

e
(ω

t)

-0.5 0 0.5
0

0.5

1

f

|E
(f

)|

Fig. 2: Prediction error analysis for the sequence Foreman

with ω = 1/3 (from 30 to 90 frames per second): e(ωt)
for the original sequence (top); e(ωt) for the interpolated se-
quence (middle); |E(f)| for the interpolated sequence (bot-
tom).

• Estimate the periodicity of e(ωt) in the frequency do-
main by searching for peaks in |E(f)| = |F(e(ωt))|,
where F indicates the Fourier transform (see Fig. 2).

Once this periodicity is estimated, it can be directly related to
an interpolation factor ω using the equation

∆f = 0.5− |ω − 0.5|,

where ∆f is the distance between two peaks (period) in the
normalized frequency domain [5]. This allows an analyst to
assess if the sequence has been interpolated and estimate the
original frame rate.

However, as noticed in [5], such an interpolation suffers
of some limitations. In particular, when downsampling, or
upsampling by a factor less than 1/2 are applied, the detector
is subject to aliasing. Indeed, periodic artifacts for temporally
downsampled sequences are coincident with those of upsam-
pled ones. This fact prevents the detector to estimate the cor-
rect interpolation factor when downsampling is considered.
Even if in the case of spatial resampling a possible solution
was recently proposed in [9], as it regards frame interpolation
this issue is still open.

3. EXPERIMENTAL RESULTS

The described detector was tested on three sequences (namely,
Foreman, Hall, and Mobile at CIF spatial resolution) of 300
frames each. All these sequences are uncompressed and
their frame rate is of 30 Frames Per Second (FPS). Four

Table 1: Relationship between frame rate (in frames per sec-
ond - FPS) and resampling factor ω.

FPS 7.5 10 15 25 36 45 60 90 120 150

ω 4 3 2 6/5 5/6 2/3 1/2 1/3 1/4 1/5

Table 2: Correct ω identification probability (“1*” indicates
that ω is aliased).

(a) ISTWZCodec

FPS 60 90 120

precision 1 1 1

(b) MSU

FPS 60 90 120

precision 1 1 1

(c) Medianet

FPS 7.5 10 15 25 36 45 60 90 120 150

precision 0 0 0 1* 1* 1* 1 1 1 1

(d) MVTools2

FPS 7.5 10 15 25 36 45 60 90 120

precision 0 0 0 1* 1* 1* 1 1 1

different motion-compensated interpolators were tested (IST-
WZCodec [10], Medianet [11], and the two freeware MSU
and MVTools2), and every sequence was temporally resam-
pled using the factors in Table 1, which also reports the target
frame-rate. Table 2 shows the used ω for every interpolator,
and the probabilty of correct identification averaged on all
the sequences when all the frames are used. The notation
“1*” indicates that, instead of the correct resampling fac-
tor, the aliased version was found. We do not report results
on non-interpolated sequences, since on the pool of 10 un-
compressed CIF sequences we tested, the detector always
correctly identified non-compressed sequences.

Results for these sequences can be clustered in three
classes: i) ω ≤ 1/2; ii) 1/2 < ω < 2; iii) ω ≥ 2. For
the first class (upsampling with ω ≤ 1/2) the resampling
factor is always correctly estimated. For the second class,
when the sequence is upsampled or dowsampled with ω up
to 6/5, the estimated ω is always confused with the aliased
version. For downsampling with integer ω ≥ 2 the detector
does not work. However this is an expected behavior. Indeed,
when the detector operates in the aliasing zone, we can not
disambiguate the estimated values of ω. On the other hand,
when the sequence is downsampled by an integer factor, no
interpolation is performed, but the only operation performed
by the interpolators is frame dropping. This means that no
filtering operation is involved, thus the detector fails.

It is interesting to analyze how the detection accuracy
varies when changing the number of available frames. Fig-
ure 3 shows this analysis. Results are averaged on all the
tested sequences, and show that the correct resampling factor
can be identified even if only a subset of frames is analyzed.
As an example, for sequences interpolated with ω = 1/2
(from 30 to 60 FPS), by analyzing only 56 consecutive frames

Foreman (original)

Foreman (interpolated)

Foreman (interpolated)
Spectral analysis

0 20 40 60 80 100
0

1

2
x�10

6

replacements

frames

e
(ω

t)

0 20 40 60 80 100
0

1

2
x�10

6

frames

e
(ω

t)

-0.5 0 0.5
0

0.5

1

f

|E
(f

)|

Fig. 2: Prediction error analysis for the sequence Foreman

with ω = 1/3 (from 30 to 90 frames per second): e(ωt)
for the original sequence (top); e(ωt) for the interpolated se-
quence (middle); |E(f)| for the interpolated sequence (bot-
tom).

• Estimate the periodicity of e(ωt) in the frequency do-
main by searching for peaks in |E(f)| = |F(e(ωt))|,
where F indicates the Fourier transform (see Fig. 2).

Once this periodicity is estimated, it can be directly related to
an interpolation factor ω using the equation

∆f = 0.5− |ω − 0.5|,

where ∆f is the distance between two peaks (period) in the
normalized frequency domain [5]. This allows an analyst to
assess if the sequence has been interpolated and estimate the
original frame rate.

However, as noticed in [5], such an interpolation suffers
of some limitations. In particular, when downsampling, or
upsampling by a factor less than 1/2 are applied, the detector
is subject to aliasing. Indeed, periodic artifacts for temporally
downsampled sequences are coincident with those of upsam-
pled ones. This fact prevents the detector to estimate the cor-
rect interpolation factor when downsampling is considered.
Even if in the case of spatial resampling a possible solution
was recently proposed in [9], as it regards frame interpolation
this issue is still open.

3. EXPERIMENTAL RESULTS

The described detector was tested on three sequences (namely,
Foreman, Hall, and Mobile at CIF spatial resolution) of 300
frames each. All these sequences are uncompressed and
their frame rate is of 30 Frames Per Second (FPS). Four

Table 1: Relationship between frame rate (in frames per sec-
ond - FPS) and resampling factor ω.

FPS 7.5 10 15 25 36 45 60 90 120 150

ω 4 3 2 6/5 5/6 2/3 1/2 1/3 1/4 1/5

Table 2: Correct ω identification probability (“1*” indicates
that ω is aliased).

(a) ISTWZCodec

FPS 60 90 120

precision 1 1 1

(b) MSU

FPS 60 90 120

precision 1 1 1

(c) Medianet

FPS 7.5 10 15 25 36 45 60 90 120 150

precision 0 0 0 1* 1* 1* 1 1 1 1

(d) MVTools2

FPS 7.5 10 15 25 36 45 60 90 120

precision 0 0 0 1* 1* 1* 1 1 1

different motion-compensated interpolators were tested (IST-
WZCodec [10], Medianet [11], and the two freeware MSU
and MVTools2), and every sequence was temporally resam-
pled using the factors in Table 1, which also reports the target
frame-rate. Table 2 shows the used ω for every interpolator,
and the probabilty of correct identification averaged on all
the sequences when all the frames are used. The notation
“1*” indicates that, instead of the correct resampling fac-
tor, the aliased version was found. We do not report results
on non-interpolated sequences, since on the pool of 10 un-
compressed CIF sequences we tested, the detector always
correctly identified non-compressed sequences.

Results for these sequences can be clustered in three
classes: i) ω ≤ 1/2; ii) 1/2 < ω < 2; iii) ω ≥ 2. For
the first class (upsampling with ω ≤ 1/2) the resampling
factor is always correctly estimated. For the second class,
when the sequence is upsampled or dowsampled with ω up
to 6/5, the estimated ω is always confused with the aliased
version. For downsampling with integer ω ≥ 2 the detector
does not work. However this is an expected behavior. Indeed,
when the detector operates in the aliasing zone, we can not
disambiguate the estimated values of ω. On the other hand,
when the sequence is downsampled by an integer factor, no
interpolation is performed, but the only operation performed
by the interpolators is frame dropping. This means that no
filtering operation is involved, thus the detector fails.

It is interesting to analyze how the detection accuracy
varies when changing the number of available frames. Fig-
ure 3 shows this analysis. Results are averaged on all the
tested sequences, and show that the correct resampling factor
can be identified even if only a subset of frames is analyzed.
As an example, for sequences interpolated with ω = 1/2
(from 30 to 60 FPS), by analyzing only 56 consecutive frames

Paolo Bestagini

Work organisation

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Type of
codec

Image
splicing

Video
copy-paste

Video
copy-move

Re-capture

Paolo Bestagini

Work organisation

Acquisition-based
footprints

copy-move

Re-capture

Paolo Bestagini

Acquisition-based footprints !45

Paolo Bestagini

Acquisition-based footprints !45

Paolo Bestagini

Acquisition-based footprints

• Re-acquisition is a powerful anti-forensic tool

• Re-acquired videos are visually similar to the originals

• Many footprints are masked
• Detectors can be-fooled

Paolo Bestagini – ICIP 2013

Video recapture and antiforensics

•  Video recapture as antiforensic technique
•  A sequence is displayed on a monitor
•  The sequence is recaptured

4

•  Recaptured videos visually similar to the originals

•  Many footprints get deleted

original recaptured
15

−20 0 20
0

20

40

−20 0 20
0

20

40

−20 0 20
0

20

40

−20 0 20
0

100

200

−20 0 20
0

200

400

−20 0 20
0

200

400

c1

c1

c2

c2

c3

c3

Fig. 5: Histograms of DCT coefficients (c1, c2, c3) before (first row) and after (second row) quantization. The

quantization step ∆(i, j) can be estimated by the gaps between consecutive peaks.

In [39] the authors propose a method for estimating the elements of the whole quantization table.

Separate histograms are computed for each DCT coefficient subband (i, j). Analyzing the periodicity of

the power spectrum, it is possible to extract the quantization step ∆(i, j) for each subband. Periodicity

is detected with a method based on the second order derivative applied to the histograms.

In [14], another method based on the histograms of DCT coefficients is proposed. There, the authors

estimate the quantization table as a linear combination of existing quantization tables. A first estimate of

the quantization step size for each DCT band is obtained from the distance between adjacent peaks of the

histogram of transformed coefficients. However, in most cases, high-frequency coefficients do not contain

enough information. For this reason some elements of the quantization matrix cannot be reconstructed,

and they are estimated as a linear combination (preserving the already obtained quantization steps) of

other existing quantization tables collected into a database.

A similar argument can be used to estimate the quantization parameter in video coding, when the

same quantization matrix is used for all blocks in a frame. In [40] and [41], the authors consider the case

of MPEG-2 and H.264/AVC coded video, respectively. There, the histograms are computed from DCT

coefficients of prediction residuals. To this end, motion estimation is performed at the decoder side to

recover an approximation of the motion-compensated prediction residuals available at the encoder.

January 15, 2012 DRAFT

15

−20 0 20
0

20

40

−20 0 20
0

20

40

−20 0 20
0

20

40

−20 0 20
0

100

200

−20 0 20
0

200

400

−20 0 20
0

200

400

c1

c1

c2

c2

c3

c3

Fig. 5: Histograms of DCT coefficients (c1, c2, c3) before (first row) and after (second row) quantization. The

quantization step ∆(i, j) can be estimated by the gaps between consecutive peaks.

In [39] the authors propose a method for estimating the elements of the whole quantization table.

Separate histograms are computed for each DCT coefficient subband (i, j). Analyzing the periodicity of

the power spectrum, it is possible to extract the quantization step ∆(i, j) for each subband. Periodicity

is detected with a method based on the second order derivative applied to the histograms.

In [14], another method based on the histograms of DCT coefficients is proposed. There, the authors

estimate the quantization table as a linear combination of existing quantization tables. A first estimate of

the quantization step size for each DCT band is obtained from the distance between adjacent peaks of the

histogram of transformed coefficients. However, in most cases, high-frequency coefficients do not contain

enough information. For this reason some elements of the quantization matrix cannot be reconstructed,

and they are estimated as a linear combination (preserving the already obtained quantization steps) of

other existing quantization tables collected into a database.

A similar argument can be used to estimate the quantization parameter in video coding, when the

same quantization matrix is used for all blocks in a frame. In [40] and [41], the authors consider the case

of MPEG-2 and H.264/AVC coded video, respectively. There, the histograms are computed from DCT

coefficients of prediction residuals. To this end, motion estimation is performed at the decoder side to

recover an approximation of the motion-compensated prediction residuals available at the encoder.

January 15, 2012 DRAFT

original: DCT statistics recaptured: DCT statistics

•  Detect video recapture = detect the use of antiforensics

Paolo Bestagini – ICIP 2013

Video recapture and antiforensics

•  Video recapture as antiforensic technique
•  A sequence is displayed on a monitor
•  The sequence is recaptured

4

•  Recaptured videos visually similar to the originals

•  Many footprints get deleted

original recaptured
15

−20 0 20
0

20

40

−20 0 20
0

20

40

−20 0 20
0

20

40

−20 0 20
0

100

200

−20 0 20
0

200

400

−20 0 20
0

200

400

c1

c1

c2

c2

c3

c3

Fig. 5: Histograms of DCT coefficients (c1, c2, c3) before (first row) and after (second row) quantization. The

quantization step ∆(i, j) can be estimated by the gaps between consecutive peaks.

In [39] the authors propose a method for estimating the elements of the whole quantization table.

Separate histograms are computed for each DCT coefficient subband (i, j). Analyzing the periodicity of

the power spectrum, it is possible to extract the quantization step ∆(i, j) for each subband. Periodicity

is detected with a method based on the second order derivative applied to the histograms.

In [14], another method based on the histograms of DCT coefficients is proposed. There, the authors

estimate the quantization table as a linear combination of existing quantization tables. A first estimate of

the quantization step size for each DCT band is obtained from the distance between adjacent peaks of the

histogram of transformed coefficients. However, in most cases, high-frequency coefficients do not contain

enough information. For this reason some elements of the quantization matrix cannot be reconstructed,

and they are estimated as a linear combination (preserving the already obtained quantization steps) of

other existing quantization tables collected into a database.

A similar argument can be used to estimate the quantization parameter in video coding, when the

same quantization matrix is used for all blocks in a frame. In [40] and [41], the authors consider the case

of MPEG-2 and H.264/AVC coded video, respectively. There, the histograms are computed from DCT

coefficients of prediction residuals. To this end, motion estimation is performed at the decoder side to

recover an approximation of the motion-compensated prediction residuals available at the encoder.

January 15, 2012 DRAFT

15

−20 0 20
0

20

40

−20 0 20
0

20

40

−20 0 20
0

20

40

−20 0 20
0

100

200

−20 0 20
0

200

400

−20 0 20
0

200

400

c1

c1

c2

c2

c3

c3

Fig. 5: Histograms of DCT coefficients (c1, c2, c3) before (first row) and after (second row) quantization. The

quantization step ∆(i, j) can be estimated by the gaps between consecutive peaks.

In [39] the authors propose a method for estimating the elements of the whole quantization table.

Separate histograms are computed for each DCT coefficient subband (i, j). Analyzing the periodicity of

the power spectrum, it is possible to extract the quantization step ∆(i, j) for each subband. Periodicity

is detected with a method based on the second order derivative applied to the histograms.

In [14], another method based on the histograms of DCT coefficients is proposed. There, the authors

estimate the quantization table as a linear combination of existing quantization tables. A first estimate of

the quantization step size for each DCT band is obtained from the distance between adjacent peaks of the

histogram of transformed coefficients. However, in most cases, high-frequency coefficients do not contain

enough information. For this reason some elements of the quantization matrix cannot be reconstructed,

and they are estimated as a linear combination (preserving the already obtained quantization steps) of

other existing quantization tables collected into a database.

A similar argument can be used to estimate the quantization parameter in video coding, when the

same quantization matrix is used for all blocks in a frame. In [40] and [41], the authors consider the case

of MPEG-2 and H.264/AVC coded video, respectively. There, the histograms are computed from DCT

coefficients of prediction residuals. To this end, motion estimation is performed at the decoder side to

recover an approximation of the motion-compensated prediction residuals available at the encoder.

January 15, 2012 DRAFT

original: DCT statistics recaptured: DCT statistics

•  Detect video recapture = detect the use of antiforensics

!46

Paolo Bestagini

Is the video recaptured?

!47

[Bestagini et al. ICIP 2013]

Paolo Bestagini

Acquisition-based footprints: re-capture

• Setup:
• A video is re-captured from a LCD monitor

• Ghosting as filtering:

!48

Paolo Bestagini – ICIP 2013

Detector (non-periodic): ghosting model

•  We can model the ghosting as a filtering operation:

Approximating the motion as a translation between adjacent frames:

11

+ =

 = Orig. scene = Recap. scene

=

 = Ghost. Filter = Recap. scene

 = Orig. scene

 = Orig. scene

*

Y1 Y2 Y3

X1 X2 X3

φ

t

t

TS TL

TC TI

Fig. 1: Recapturing model showing frames Xi on a monitor (top) and recap-
tured frames Yj (bottom). TS is the nominal original frame length, which is
multiple of the screen refresh time TL, TI is the integration time, TC is the
recaptured frame length, and φ is the phase term.

rate of FL = 1/TL. The sequence is recaptured with a camcorder to
obtain Y = {Yj}, j = 1, ..., J , with a frame rate of FC = 1/TC .
Each frame Yj is obtained by integrating the light that hits the cam-
era sensor over a time window TI . Since the monitor and the camera
are not synchronized, the start of the recapturing process is delayed
by a phase term φ.

In order to fully understand the practical implications of our
problem formulation, let us consider inner workings of the moni-
tor and camera system. First of all, based on current technologies
it is possible to approximate the functional behavior of an LCD dis-
play as a system in which all the pixels are simultaneously refreshed
at intervals of TL, with negligible switching time for our purposes.
Because of this, no evident recapture footprints such as Cathode Ray
Tube scan-line artifacts are generated at refresh time. Moreover, in
order to display the video at the correct frame-rate, the condition FL

(mod FS) = 0 must in principle be verified. Indeed, the length
of a displayed video frame TS should match a multiple of the re-
fresh time TL. When this condition is not verified, the displayed
sequence must be edited using either frame-interpolation or frame-
repetition. Both techniques however alter the temporal correlation of
the sequence introducing detectable artifacts. Detecting recapturing
when FL (mod FS) = 0 is then more difficult, since there are no
additional artifacts to rely on.

Regarding the camera integration window TI , this can in princi-
ple be set arbitrarily. However, some general practical rules have to
be observed: if TI is too high, moving objects within the scene may
be affected by motion blur; if TI is too low, the resulting video will
appear less smooth and also noisy, since the equivalent ISO setting
of the sensor needs to be increased to capture enough light. Since
low-end cameras typically do not allow the user to set this parame-
ter, a general rule of thumb is that TI = TC/2. However, the value
of TI does not negatively affect the validity of our model or the per-
formance of our detector.

Bearing this in mind, the j-th camcorder frame Yj depends on
what is displayed on the LCD during the integration window TI .
More specifically, we can distinguish two cases:

1. If the integration window falls either completely within the
bounds of the i-th frame or between two frames of the original
sequence, which are identical because of frame repetition (i.e,
between Xi and Xi+1 = Xi), then Yj = Xi.

2. If the integration window covers the transition between two
frames Xi and Xi+1, then Yj is a weighted average between
the two displayed frames. In particular, if within TI the frame
Xi is kept for a time T 0

I , and the frame Xi+1 is kept for T 1
I ,

such that TI = T 0
I + T 1

I , the resulting camera frame can be
expressed as Yj = αXi+(1−α)Xi+1, where α = T 0

I /TI ∈
(0 : 1). In this case, a ghosting artifact is present on Yj (as
shown in Figure 3b).

Depending on the relative magnitude of the parameters FS and
FC , the ghosting artifact may affect the recaptured sequence dif-
ferently, as shown in Figure 2. We will now show how all cases
are either of no practical relevance or can be easily solved, relying
on previously proposed methods, with the exception of the scenario
where FC = FS .

If FC ≪ FS (Figure 2a), the recaptured sequence consists
solely of heavily ghosted frames, and some frames from the original
sequence are skipped. In this scenario, Y is too distorted to be
used as a copy of X by a malicious user. Conversely, in order to
have FC ≫ FS (Figure 2b), the used camera should be either a
high-end, high-speed camera, or the video sequence should have a
very low frame-rate, which are unlikely conditions. Moreover, such
a recaptured sequence would consist of many consecutive repeated
frames. If FC ≃ FS (Figures 2c and 2d), Y consists of a mixture
of ghosted frames and original frames. The occurrence of ghosted
frames forms a pattern, with a period depending on the relationship
between FS and FC . Since ghosted frames are interpolated versions
of original frames, and this interpolation appears periodically in the
sequence, these sequences can be detected using an interpolation
detector such as the one proposed in [12].

The only case of practical importance without a known solution
is therefore when FC = FS . In this study, we propose a method that
focuses on this challenging scenario. Indeed, depending on the time
delay φ, the time window TI may fall either within a single frame
window Xi (Figure 2e) or between two consecutive frames Xi and
Xi+1 (Figure 2f). In the first case, we obtain Y = X, which is
the only situation in which nothing can be detected. In the second
scenario, the ghosting artifact is present on all recaptured frames
with the same magnitude, without any non-ghosted frames perfectly
recaptured from the input signal being available.

2.2. Ghosting Artifact Model

The presence of the ghosting artifact is the footprint we use to de-
tect recapturing. In order to exploit it, we model the artifact as the
outcome of a filtering operation. Let us define a mapping between
the indexes i and j of original and recaptured frames respectively,
such that i = j and Yi = αXi + (1 − α)Xi+1, where α repre-
sents the relative proportion of Xi within the integration window TI .
This is possible since we only consider the case FC = FS . Let us
then consider the k-th object in Xi (e.g., the rectangle in Figure 3a)
whose position moves according to the motion of a characteristic
point pk

i = (mk
i , n

k
i). If the object moves in time such that it ap-

pears in pk
i+1 = (mk

i+1, n
k
i+1) in Xi+1 we can compute the motion

vector vk
i = pk

i+1 − pk
i . If we capture the screen during the tran-

sition between Xi and Xi+1, in the recaptured frame Yi we observe
a ghosted version of the object (e.g., the ghosted rectangle in Fig-
ure 3b). Indeed, we are averaging two pictures of the same object at
two different positions related by the motion vector vk

i . If the motion
can be locally approximated by a translation (e.g., small motion with
respect to FC), and we consider a patch P k

i in the neighborhood of
pk
i , the same ghosted patch can be obtained by convolution as

P̂ k
i = P k

i ∗Hk
i (α), (1)

where Hk
i (α) is a two-dimensional filter composed by two Dirac

pulses: the first pulse of magnitude α in the origin of the filter (i.e,
(0, 0)) takes into account the contribution of the patch centered in
pk
i ; the second one of magnitude (1− α) is located at vk

i , and takes
into account the contribution of the patch in pk

i+1. Figure 3c shows

the result of the convolution P k
i ∗Hk

i (α).

Y1 Y2 Y3

X1 X2 X3

φ

t

t

TS TL

TC TI

Fig. 1: Recapturing model showing frames Xi on a monitor (top) and recap-
tured frames Yj (bottom). TS is the nominal original frame length, which is
multiple of the screen refresh time TL, TI is the integration time, TC is the
recaptured frame length, and φ is the phase term.

rate of FL = 1/TL. The sequence is recaptured with a camcorder to
obtain Y = {Yj}, j = 1, ..., J , with a frame rate of FC = 1/TC .
Each frame Yj is obtained by integrating the light that hits the cam-
era sensor over a time window TI . Since the monitor and the camera
are not synchronized, the start of the recapturing process is delayed
by a phase term φ.

In order to fully understand the practical implications of our
problem formulation, let us consider inner workings of the moni-
tor and camera system. First of all, based on current technologies
it is possible to approximate the functional behavior of an LCD dis-
play as a system in which all the pixels are simultaneously refreshed
at intervals of TL, with negligible switching time for our purposes.
Because of this, no evident recapture footprints such as Cathode Ray
Tube scan-line artifacts are generated at refresh time. Moreover, in
order to display the video at the correct frame-rate, the condition FL

(mod FS) = 0 must in principle be verified. Indeed, the length
of a displayed video frame TS should match a multiple of the re-
fresh time TL. When this condition is not verified, the displayed
sequence must be edited using either frame-interpolation or frame-
repetition. Both techniques however alter the temporal correlation of
the sequence introducing detectable artifacts. Detecting recapturing
when FL (mod FS) = 0 is then more difficult, since there are no
additional artifacts to rely on.

Regarding the camera integration window TI , this can in princi-
ple be set arbitrarily. However, some general practical rules have to
be observed: if TI is too high, moving objects within the scene may
be affected by motion blur; if TI is too low, the resulting video will
appear less smooth and also noisy, since the equivalent ISO setting
of the sensor needs to be increased to capture enough light. Since
low-end cameras typically do not allow the user to set this parame-
ter, a general rule of thumb is that TI = TC/2. However, the value
of TI does not negatively affect the validity of our model or the per-
formance of our detector.

Bearing this in mind, the j-th camcorder frame Yj depends on
what is displayed on the LCD during the integration window TI .
More specifically, we can distinguish two cases:

1. If the integration window falls either completely within the
bounds of the i-th frame or between two frames of the original
sequence, which are identical because of frame repetition (i.e,
between Xi and Xi+1 = Xi), then Yj = Xi.

2. If the integration window covers the transition between two
frames Xi and Xi+1, then Yj is a weighted average between
the two displayed frames. In particular, if within TI the frame
Xi is kept for a time T 0

I , and the frame Xi+1 is kept for T 1
I ,

such that TI = T 0
I + T 1

I , the resulting camera frame can be
expressed as Yj = αXi+(1−α)Xi+1, where α = T 0

I /TI ∈
(0 : 1). In this case, a ghosting artifact is present on Yj (as
shown in Figure 3b).

Depending on the relative magnitude of the parameters FS and
FC , the ghosting artifact may affect the recaptured sequence dif-
ferently, as shown in Figure 2. We will now show how all cases
are either of no practical relevance or can be easily solved, relying
on previously proposed methods, with the exception of the scenario
where FC = FS .

If FC ≪ FS (Figure 2a), the recaptured sequence consists
solely of heavily ghosted frames, and some frames from the original
sequence are skipped. In this scenario, Y is too distorted to be
used as a copy of X by a malicious user. Conversely, in order to
have FC ≫ FS (Figure 2b), the used camera should be either a
high-end, high-speed camera, or the video sequence should have a
very low frame-rate, which are unlikely conditions. Moreover, such
a recaptured sequence would consist of many consecutive repeated
frames. If FC ≃ FS (Figures 2c and 2d), Y consists of a mixture
of ghosted frames and original frames. The occurrence of ghosted
frames forms a pattern, with a period depending on the relationship
between FS and FC . Since ghosted frames are interpolated versions
of original frames, and this interpolation appears periodically in the
sequence, these sequences can be detected using an interpolation
detector such as the one proposed in [12].

The only case of practical importance without a known solution
is therefore when FC = FS . In this study, we propose a method that
focuses on this challenging scenario. Indeed, depending on the time
delay φ, the time window TI may fall either within a single frame
window Xi (Figure 2e) or between two consecutive frames Xi and
Xi+1 (Figure 2f). In the first case, we obtain Y = X, which is
the only situation in which nothing can be detected. In the second
scenario, the ghosting artifact is present on all recaptured frames
with the same magnitude, without any non-ghosted frames perfectly
recaptured from the input signal being available.

2.2. Ghosting Artifact Model

The presence of the ghosting artifact is the footprint we use to de-
tect recapturing. In order to exploit it, we model the artifact as the
outcome of a filtering operation. Let us define a mapping between
the indexes i and j of original and recaptured frames respectively,
such that i = j and Yi = αXi + (1 − α)Xi+1, where α repre-
sents the relative proportion of Xi within the integration window TI .
This is possible since we only consider the case FC = FS . Let us
then consider the k-th object in Xi (e.g., the rectangle in Figure 3a)
whose position moves according to the motion of a characteristic
point pk

i = (mk
i , n

k
i). If the object moves in time such that it ap-

pears in pk
i+1 = (mk

i+1, n
k
i+1) in Xi+1 we can compute the motion

vector vk
i = pk

i+1 − pk
i . If we capture the screen during the tran-

sition between Xi and Xi+1, in the recaptured frame Yi we observe
a ghosted version of the object (e.g., the ghosted rectangle in Fig-
ure 3b). Indeed, we are averaging two pictures of the same object at
two different positions related by the motion vector vk

i . If the motion
can be locally approximated by a translation (e.g., small motion with
respect to FC), and we consider a patch P k

i in the neighborhood of
pk
i , the same ghosted patch can be obtained by convolution as

P̂ k
i = P k

i ∗Hk
i (α), (1)

where Hk
i (α) is a two-dimensional filter composed by two Dirac

pulses: the first pulse of magnitude α in the origin of the filter (i.e,
(0, 0)) takes into account the contribution of the patch centered in
pk
i ; the second one of magnitude (1− α) is located at vk

i , and takes
into account the contribution of the patch in pk

i+1. Figure 3c shows

the result of the convolution P k
i ∗Hk

i (α).

Y1 Y2 Y3

X1 X2 X3

φ

t

t

TS TL

TC TI

Fig. 1: Recapturing model showing frames Xi on a monitor (top) and recap-
tured frames Yj (bottom). TS is the nominal original frame length, which is
multiple of the screen refresh time TL, TI is the integration time, TC is the
recaptured frame length, and φ is the phase term.

rate of FL = 1/TL. The sequence is recaptured with a camcorder to
obtain Y = {Yj}, j = 1, ..., J , with a frame rate of FC = 1/TC .
Each frame Yj is obtained by integrating the light that hits the cam-
era sensor over a time window TI . Since the monitor and the camera
are not synchronized, the start of the recapturing process is delayed
by a phase term φ.

In order to fully understand the practical implications of our
problem formulation, let us consider inner workings of the moni-
tor and camera system. First of all, based on current technologies
it is possible to approximate the functional behavior of an LCD dis-
play as a system in which all the pixels are simultaneously refreshed
at intervals of TL, with negligible switching time for our purposes.
Because of this, no evident recapture footprints such as Cathode Ray
Tube scan-line artifacts are generated at refresh time. Moreover, in
order to display the video at the correct frame-rate, the condition FL

(mod FS) = 0 must in principle be verified. Indeed, the length
of a displayed video frame TS should match a multiple of the re-
fresh time TL. When this condition is not verified, the displayed
sequence must be edited using either frame-interpolation or frame-
repetition. Both techniques however alter the temporal correlation of
the sequence introducing detectable artifacts. Detecting recapturing
when FL (mod FS) = 0 is then more difficult, since there are no
additional artifacts to rely on.

Regarding the camera integration window TI , this can in princi-
ple be set arbitrarily. However, some general practical rules have to
be observed: if TI is too high, moving objects within the scene may
be affected by motion blur; if TI is too low, the resulting video will
appear less smooth and also noisy, since the equivalent ISO setting
of the sensor needs to be increased to capture enough light. Since
low-end cameras typically do not allow the user to set this parame-
ter, a general rule of thumb is that TI = TC/2. However, the value
of TI does not negatively affect the validity of our model or the per-
formance of our detector.

Bearing this in mind, the j-th camcorder frame Yj depends on
what is displayed on the LCD during the integration window TI .
More specifically, we can distinguish two cases:

1. If the integration window falls either completely within the
bounds of the i-th frame or between two frames of the original
sequence, which are identical because of frame repetition (i.e,
between Xi and Xi+1 = Xi), then Yj = Xi.

2. If the integration window covers the transition between two
frames Xi and Xi+1, then Yj is a weighted average between
the two displayed frames. In particular, if within TI the frame
Xi is kept for a time T 0

I , and the frame Xi+1 is kept for T 1
I ,

such that TI = T 0
I + T 1

I , the resulting camera frame can be
expressed as Yj = αXi+(1−α)Xi+1, where α = T 0

I /TI ∈
(0 : 1). In this case, a ghosting artifact is present on Yj (as
shown in Figure 3b).

Depending on the relative magnitude of the parameters FS and
FC , the ghosting artifact may affect the recaptured sequence dif-
ferently, as shown in Figure 2. We will now show how all cases
are either of no practical relevance or can be easily solved, relying
on previously proposed methods, with the exception of the scenario
where FC = FS .

If FC ≪ FS (Figure 2a), the recaptured sequence consists
solely of heavily ghosted frames, and some frames from the original
sequence are skipped. In this scenario, Y is too distorted to be
used as a copy of X by a malicious user. Conversely, in order to
have FC ≫ FS (Figure 2b), the used camera should be either a
high-end, high-speed camera, or the video sequence should have a
very low frame-rate, which are unlikely conditions. Moreover, such
a recaptured sequence would consist of many consecutive repeated
frames. If FC ≃ FS (Figures 2c and 2d), Y consists of a mixture
of ghosted frames and original frames. The occurrence of ghosted
frames forms a pattern, with a period depending on the relationship
between FS and FC . Since ghosted frames are interpolated versions
of original frames, and this interpolation appears periodically in the
sequence, these sequences can be detected using an interpolation
detector such as the one proposed in [12].

The only case of practical importance without a known solution
is therefore when FC = FS . In this study, we propose a method that
focuses on this challenging scenario. Indeed, depending on the time
delay φ, the time window TI may fall either within a single frame
window Xi (Figure 2e) or between two consecutive frames Xi and
Xi+1 (Figure 2f). In the first case, we obtain Y = X, which is
the only situation in which nothing can be detected. In the second
scenario, the ghosting artifact is present on all recaptured frames
with the same magnitude, without any non-ghosted frames perfectly
recaptured from the input signal being available.

2.2. Ghosting Artifact Model

The presence of the ghosting artifact is the footprint we use to de-
tect recapturing. In order to exploit it, we model the artifact as the
outcome of a filtering operation. Let us define a mapping between
the indexes i and j of original and recaptured frames respectively,
such that i = j and Yi = αXi + (1 − α)Xi+1, where α repre-
sents the relative proportion of Xi within the integration window TI .
This is possible since we only consider the case FC = FS . Let us
then consider the k-th object in Xi (e.g., the rectangle in Figure 3a)
whose position moves according to the motion of a characteristic
point pk

i = (mk
i , n

k
i). If the object moves in time such that it ap-

pears in pk
i+1 = (mk

i+1, n
k
i+1) in Xi+1 we can compute the motion

vector vk
i = pk

i+1 − pk
i . If we capture the screen during the tran-

sition between Xi and Xi+1, in the recaptured frame Yi we observe
a ghosted version of the object (e.g., the ghosted rectangle in Fig-
ure 3b). Indeed, we are averaging two pictures of the same object at
two different positions related by the motion vector vk

i . If the motion
can be locally approximated by a translation (e.g., small motion with
respect to FC), and we consider a patch P k

i in the neighborhood of
pk
i , the same ghosted patch can be obtained by convolution as

P̂ k
i = P k

i ∗Hk
i (α), (1)

where Hk
i (α) is a two-dimensional filter composed by two Dirac

pulses: the first pulse of magnitude α in the origin of the filter (i.e,
(0, 0)) takes into account the contribution of the patch centered in
pk
i ; the second one of magnitude (1− α) is located at vk

i , and takes
into account the contribution of the patch in pk

i+1. Figure 3c shows

the result of the convolution P k
i ∗Hk

i (α).

Y1 Y2 Y3

X1 X2 X3

φ

t

t

TS TL

TC TI

Fig. 1: Recapturing model showing frames Xi on a monitor (top) and recap-
tured frames Yj (bottom). TS is the nominal original frame length, which is
multiple of the screen refresh time TL, TI is the integration time, TC is the
recaptured frame length, and φ is the phase term.

rate of FL = 1/TL. The sequence is recaptured with a camcorder to
obtain Y = {Yj}, j = 1, ..., J , with a frame rate of FC = 1/TC .
Each frame Yj is obtained by integrating the light that hits the cam-
era sensor over a time window TI . Since the monitor and the camera
are not synchronized, the start of the recapturing process is delayed
by a phase term φ.

In order to fully understand the practical implications of our
problem formulation, let us consider inner workings of the moni-
tor and camera system. First of all, based on current technologies
it is possible to approximate the functional behavior of an LCD dis-
play as a system in which all the pixels are simultaneously refreshed
at intervals of TL, with negligible switching time for our purposes.
Because of this, no evident recapture footprints such as Cathode Ray
Tube scan-line artifacts are generated at refresh time. Moreover, in
order to display the video at the correct frame-rate, the condition FL

(mod FS) = 0 must in principle be verified. Indeed, the length
of a displayed video frame TS should match a multiple of the re-
fresh time TL. When this condition is not verified, the displayed
sequence must be edited using either frame-interpolation or frame-
repetition. Both techniques however alter the temporal correlation of
the sequence introducing detectable artifacts. Detecting recapturing
when FL (mod FS) = 0 is then more difficult, since there are no
additional artifacts to rely on.

Regarding the camera integration window TI , this can in princi-
ple be set arbitrarily. However, some general practical rules have to
be observed: if TI is too high, moving objects within the scene may
be affected by motion blur; if TI is too low, the resulting video will
appear less smooth and also noisy, since the equivalent ISO setting
of the sensor needs to be increased to capture enough light. Since
low-end cameras typically do not allow the user to set this parame-
ter, a general rule of thumb is that TI = TC/2. However, the value
of TI does not negatively affect the validity of our model or the per-
formance of our detector.

Bearing this in mind, the j-th camcorder frame Yj depends on
what is displayed on the LCD during the integration window TI .
More specifically, we can distinguish two cases:

1. If the integration window falls either completely within the
bounds of the i-th frame or between two frames of the original
sequence, which are identical because of frame repetition (i.e,
between Xi and Xi+1 = Xi), then Yj = Xi.

2. If the integration window covers the transition between two
frames Xi and Xi+1, then Yj is a weighted average between
the two displayed frames. In particular, if within TI the frame
Xi is kept for a time T 0

I , and the frame Xi+1 is kept for T 1
I ,

such that TI = T 0
I + T 1

I , the resulting camera frame can be
expressed as Yj = αXi+(1−α)Xi+1, where α = T 0

I /TI ∈
(0 : 1). In this case, a ghosting artifact is present on Yj (as
shown in Figure 3b).

Depending on the relative magnitude of the parameters FS and
FC , the ghosting artifact may affect the recaptured sequence dif-
ferently, as shown in Figure 2. We will now show how all cases
are either of no practical relevance or can be easily solved, relying
on previously proposed methods, with the exception of the scenario
where FC = FS .

If FC ≪ FS (Figure 2a), the recaptured sequence consists
solely of heavily ghosted frames, and some frames from the original
sequence are skipped. In this scenario, Y is too distorted to be
used as a copy of X by a malicious user. Conversely, in order to
have FC ≫ FS (Figure 2b), the used camera should be either a
high-end, high-speed camera, or the video sequence should have a
very low frame-rate, which are unlikely conditions. Moreover, such
a recaptured sequence would consist of many consecutive repeated
frames. If FC ≃ FS (Figures 2c and 2d), Y consists of a mixture
of ghosted frames and original frames. The occurrence of ghosted
frames forms a pattern, with a period depending on the relationship
between FS and FC . Since ghosted frames are interpolated versions
of original frames, and this interpolation appears periodically in the
sequence, these sequences can be detected using an interpolation
detector such as the one proposed in [12].

The only case of practical importance without a known solution
is therefore when FC = FS . In this study, we propose a method that
focuses on this challenging scenario. Indeed, depending on the time
delay φ, the time window TI may fall either within a single frame
window Xi (Figure 2e) or between two consecutive frames Xi and
Xi+1 (Figure 2f). In the first case, we obtain Y = X, which is
the only situation in which nothing can be detected. In the second
scenario, the ghosting artifact is present on all recaptured frames
with the same magnitude, without any non-ghosted frames perfectly
recaptured from the input signal being available.

2.2. Ghosting Artifact Model

The presence of the ghosting artifact is the footprint we use to de-
tect recapturing. In order to exploit it, we model the artifact as the
outcome of a filtering operation. Let us define a mapping between
the indexes i and j of original and recaptured frames respectively,
such that i = j and Yi = αXi + (1 − α)Xi+1, where α repre-
sents the relative proportion of Xi within the integration window TI .
This is possible since we only consider the case FC = FS . Let us
then consider the k-th object in Xi (e.g., the rectangle in Figure 3a)
whose position moves according to the motion of a characteristic
point pk

i = (mk
i , n

k
i). If the object moves in time such that it ap-

pears in pk
i+1 = (mk

i+1, n
k
i+1) in Xi+1 we can compute the motion

vector vk
i = pk

i+1 − pk
i . If we capture the screen during the tran-

sition between Xi and Xi+1, in the recaptured frame Yi we observe
a ghosted version of the object (e.g., the ghosted rectangle in Fig-
ure 3b). Indeed, we are averaging two pictures of the same object at
two different positions related by the motion vector vk

i . If the motion
can be locally approximated by a translation (e.g., small motion with
respect to FC), and we consider a patch P k

i in the neighborhood of
pk
i , the same ghosted patch can be obtained by convolution as

P̂ k
i = P k

i ∗Hk
i (α), (1)

where Hk
i (α) is a two-dimensional filter composed by two Dirac

pulses: the first pulse of magnitude α in the origin of the filter (i.e,
(0, 0)) takes into account the contribution of the patch centered in
pk
i ; the second one of magnitude (1− α) is located at vk

i , and takes
into account the contribution of the patch in pk

i+1. Figure 3c shows

the result of the convolution P k
i ∗Hk

i (α).

ei =
∑

m,n

|Y (m,n)i − Ỹ (m,n)i|2

Ỹi =
Yi+1 − Yi−1

2

H(α)

2

Y1 Y2 Y3

X1 X2 X3

φ

t

t

TS TL

TC TI

Fig. 1: Recapturing model showing frames Xi on a monitor (top) and recap-
tured frames Yj (bottom). TS is the nominal original frame length, which is
multiple of the screen refresh time TL, TI is the integration time, TC is the
recaptured frame length, and φ is the phase term.

rate of FL = 1/TL. The sequence is recaptured with a camcorder to
obtain Y = {Yj}, j = 1, ..., J , with a frame rate of FC = 1/TC .
Each frame Yj is obtained by integrating the light that hits the cam-
era sensor over a time window TI . Since the monitor and the camera
are not synchronized, the start of the recapturing process is delayed
by a phase term φ.

In order to fully understand the practical implications of our
problem formulation, let us consider inner workings of the moni-
tor and camera system. First of all, based on current technologies
it is possible to approximate the functional behavior of an LCD dis-
play as a system in which all the pixels are simultaneously refreshed
at intervals of TL, with negligible switching time for our purposes.
Because of this, no evident recapture footprints such as Cathode Ray
Tube scan-line artifacts are generated at refresh time. Moreover, in
order to display the video at the correct frame-rate, the condition FL

(mod FS) = 0 must in principle be verified. Indeed, the length
of a displayed video frame TS should match a multiple of the re-
fresh time TL. When this condition is not verified, the displayed
sequence must be edited using either frame-interpolation or frame-
repetition. Both techniques however alter the temporal correlation of
the sequence introducing detectable artifacts. Detecting recapturing
when FL (mod FS) = 0 is then more difficult, since there are no
additional artifacts to rely on.

Regarding the camera integration window TI , this can in princi-
ple be set arbitrarily. However, some general practical rules have to
be observed: if TI is too high, moving objects within the scene may
be affected by motion blur; if TI is too low, the resulting video will
appear less smooth and also noisy, since the equivalent ISO setting
of the sensor needs to be increased to capture enough light. Since
low-end cameras typically do not allow the user to set this parame-
ter, a general rule of thumb is that TI = TC/2. However, the value
of TI does not negatively affect the validity of our model or the per-
formance of our detector.

Bearing this in mind, the j-th camcorder frame Yj depends on
what is displayed on the LCD during the integration window TI .
More specifically, we can distinguish two cases:

1. If the integration window falls either completely within the
bounds of the i-th frame or between two frames of the original
sequence, which are identical because of frame repetition (i.e,
between Xi and Xi+1 = Xi), then Yj = Xi.

2. If the integration window covers the transition between two
frames Xi and Xi+1, then Yj is a weighted average between
the two displayed frames. In particular, if within TI the frame
Xi is kept for a time T 0

I , and the frame Xi+1 is kept for T 1
I ,

such that TI = T 0
I + T 1

I , the resulting camera frame can be
expressed as Yj = αXi+(1−α)Xi+1, where α = T 0

I /TI ∈
(0 : 1). In this case, a ghosting artifact is present on Yj (as
shown in Figure 3b).

Depending on the relative magnitude of the parameters FS and
FC , the ghosting artifact may affect the recaptured sequence dif-
ferently, as shown in Figure 2. We will now show how all cases
are either of no practical relevance or can be easily solved, relying
on previously proposed methods, with the exception of the scenario
where FC = FS .

If FC ≪ FS (Figure 2a), the recaptured sequence consists
solely of heavily ghosted frames, and some frames from the original
sequence are skipped. In this scenario, Y is too distorted to be
used as a copy of X by a malicious user. Conversely, in order to
have FC ≫ FS (Figure 2b), the used camera should be either a
high-end, high-speed camera, or the video sequence should have a
very low frame-rate, which are unlikely conditions. Moreover, such
a recaptured sequence would consist of many consecutive repeated
frames. If FC ≃ FS (Figures 2c and 2d), Y consists of a mixture
of ghosted frames and original frames. The occurrence of ghosted
frames forms a pattern, with a period depending on the relationship
between FS and FC . Since ghosted frames are interpolated versions
of original frames, and this interpolation appears periodically in the
sequence, these sequences can be detected using an interpolation
detector such as the one proposed in [12].

The only case of practical importance without a known solution
is therefore when FC = FS . In this study, we propose a method that
focuses on this challenging scenario. Indeed, depending on the time
delay φ, the time window TI may fall either within a single frame
window Xi (Figure 2e) or between two consecutive frames Xi and
Xi+1 (Figure 2f). In the first case, we obtain Y = X, which is
the only situation in which nothing can be detected. In the second
scenario, the ghosting artifact is present on all recaptured frames
with the same magnitude, without any non-ghosted frames perfectly
recaptured from the input signal being available.

2.2. Ghosting Artifact Model

The presence of the ghosting artifact is the footprint we use to de-
tect recapturing. In order to exploit it, we model the artifact as the
outcome of a filtering operation. Let us define a mapping between
the indexes i and j of original and recaptured frames respectively,
such that i = j and Yi = αXi + (1 − α)Xi+1, where α repre-
sents the relative proportion of Xi within the integration window TI .
This is possible since we only consider the case FC = FS . Let us
then consider the k-th object in Xi (e.g., the rectangle in Figure 3a)
whose position moves according to the motion of a characteristic
point pk

i = (mk
i , n

k
i). If the object moves in time such that it ap-

pears in pk
i+1 = (mk

i+1, n
k
i+1) in Xi+1 we can compute the motion

vector vk
i = pk

i+1 − pk
i . If we capture the screen during the tran-

sition between Xi and Xi+1, in the recaptured frame Yi we observe
a ghosted version of the object (e.g., the ghosted rectangle in Fig-
ure 3b). Indeed, we are averaging two pictures of the same object at
two different positions related by the motion vector vk

i . If the motion
can be locally approximated by a translation (e.g., small motion with
respect to FC), and we consider a patch P k

i in the neighborhood of
pk
i , the same ghosted patch can be obtained by convolution as

P̂ k
i = P k

i ∗Hk
i (α), (1)

where Hk
i (α) is a two-dimensional filter composed by two Dirac

pulses: the first pulse of magnitude α in the origin of the filter (i.e,
(0, 0)) takes into account the contribution of the patch centered in
pk
i ; the second one of magnitude (1− α) is located at vk

i , and takes
into account the contribution of the patch in pk

i+1. Figure 3c shows

the result of the convolution P k
i ∗Hk

i (α).

Y1 Y2 Y3

X1 X2 X3

φ

t

t

TS TL

TC TI

Fig. 1: Recapturing model showing frames Xi on a monitor (top) and recap-
tured frames Yj (bottom). TS is the nominal original frame length, which is
multiple of the screen refresh time TL, TI is the integration time, TC is the
recaptured frame length, and φ is the phase term.

rate of FL = 1/TL. The sequence is recaptured with a camcorder to
obtain Y = {Yj}, j = 1, ..., J , with a frame rate of FC = 1/TC .
Each frame Yj is obtained by integrating the light that hits the cam-
era sensor over a time window TI . Since the monitor and the camera
are not synchronized, the start of the recapturing process is delayed
by a phase term φ.

In order to fully understand the practical implications of our
problem formulation, let us consider inner workings of the moni-
tor and camera system. First of all, based on current technologies
it is possible to approximate the functional behavior of an LCD dis-
play as a system in which all the pixels are simultaneously refreshed
at intervals of TL, with negligible switching time for our purposes.
Because of this, no evident recapture footprints such as Cathode Ray
Tube scan-line artifacts are generated at refresh time. Moreover, in
order to display the video at the correct frame-rate, the condition FL

(mod FS) = 0 must in principle be verified. Indeed, the length
of a displayed video frame TS should match a multiple of the re-
fresh time TL. When this condition is not verified, the displayed
sequence must be edited using either frame-interpolation or frame-
repetition. Both techniques however alter the temporal correlation of
the sequence introducing detectable artifacts. Detecting recapturing
when FL (mod FS) = 0 is then more difficult, since there are no
additional artifacts to rely on.

Regarding the camera integration window TI , this can in princi-
ple be set arbitrarily. However, some general practical rules have to
be observed: if TI is too high, moving objects within the scene may
be affected by motion blur; if TI is too low, the resulting video will
appear less smooth and also noisy, since the equivalent ISO setting
of the sensor needs to be increased to capture enough light. Since
low-end cameras typically do not allow the user to set this parame-
ter, a general rule of thumb is that TI = TC/2. However, the value
of TI does not negatively affect the validity of our model or the per-
formance of our detector.

Bearing this in mind, the j-th camcorder frame Yj depends on
what is displayed on the LCD during the integration window TI .
More specifically, we can distinguish two cases:

1. If the integration window falls either completely within the
bounds of the i-th frame or between two frames of the original
sequence, which are identical because of frame repetition (i.e,
between Xi and Xi+1 = Xi), then Yj = Xi.

2. If the integration window covers the transition between two
frames Xi and Xi+1, then Yj is a weighted average between
the two displayed frames. In particular, if within TI the frame
Xi is kept for a time T 0

I , and the frame Xi+1 is kept for T 1
I ,

such that TI = T 0
I + T 1

I , the resulting camera frame can be
expressed as Yj = αXi+(1−α)Xi+1, where α = T 0

I /TI ∈
(0 : 1). In this case, a ghosting artifact is present on Yj (as
shown in Figure 3b).

Depending on the relative magnitude of the parameters FS and
FC , the ghosting artifact may affect the recaptured sequence dif-
ferently, as shown in Figure 2. We will now show how all cases
are either of no practical relevance or can be easily solved, relying
on previously proposed methods, with the exception of the scenario
where FC = FS .

If FC ≪ FS (Figure 2a), the recaptured sequence consists
solely of heavily ghosted frames, and some frames from the original
sequence are skipped. In this scenario, Y is too distorted to be
used as a copy of X by a malicious user. Conversely, in order to
have FC ≫ FS (Figure 2b), the used camera should be either a
high-end, high-speed camera, or the video sequence should have a
very low frame-rate, which are unlikely conditions. Moreover, such
a recaptured sequence would consist of many consecutive repeated
frames. If FC ≃ FS (Figures 2c and 2d), Y consists of a mixture
of ghosted frames and original frames. The occurrence of ghosted
frames forms a pattern, with a period depending on the relationship
between FS and FC . Since ghosted frames are interpolated versions
of original frames, and this interpolation appears periodically in the
sequence, these sequences can be detected using an interpolation
detector such as the one proposed in [12].

The only case of practical importance without a known solution
is therefore when FC = FS . In this study, we propose a method that
focuses on this challenging scenario. Indeed, depending on the time
delay φ, the time window TI may fall either within a single frame
window Xi (Figure 2e) or between two consecutive frames Xi and
Xi+1 (Figure 2f). In the first case, we obtain Y = X, which is
the only situation in which nothing can be detected. In the second
scenario, the ghosting artifact is present on all recaptured frames
with the same magnitude, without any non-ghosted frames perfectly
recaptured from the input signal being available.

2.2. Ghosting Artifact Model

The presence of the ghosting artifact is the footprint we use to de-
tect recapturing. In order to exploit it, we model the artifact as the
outcome of a filtering operation. Let us define a mapping between
the indexes i and j of original and recaptured frames respectively,
such that i = j and Yi = αXi + (1 − α)Xi+1, where α repre-
sents the relative proportion of Xi within the integration window TI .
This is possible since we only consider the case FC = FS . Let us
then consider the k-th object in Xi (e.g., the rectangle in Figure 3a)
whose position moves according to the motion of a characteristic
point pk

i = (mk
i , n

k
i). If the object moves in time such that it ap-

pears in pk
i+1 = (mk

i+1, n
k
i+1) in Xi+1 we can compute the motion

vector vk
i = pk

i+1 − pk
i . If we capture the screen during the tran-

sition between Xi and Xi+1, in the recaptured frame Yi we observe
a ghosted version of the object (e.g., the ghosted rectangle in Fig-
ure 3b). Indeed, we are averaging two pictures of the same object at
two different positions related by the motion vector vk

i . If the motion
can be locally approximated by a translation (e.g., small motion with
respect to FC), and we consider a patch P k

i in the neighborhood of
pk
i , the same ghosted patch can be obtained by convolution as

P̂ k
i = P k

i ∗Hk
i (α), (1)

where Hk
i (α) is a two-dimensional filter composed by two Dirac

pulses: the first pulse of magnitude α in the origin of the filter (i.e,
(0, 0)) takes into account the contribution of the patch centered in
pk
i ; the second one of magnitude (1− α) is located at vk

i , and takes
into account the contribution of the patch in pk

i+1. Figure 3c shows

the result of the convolution P k
i ∗Hk

i (α).

Y1 Y2 Y3

X1 X2 X3

φ

t

t

TS TL

TC TI

Fig. 1: Recapturing model showing frames Xi on a monitor (top) and recap-
tured frames Yj (bottom). TS is the nominal original frame length, which is
multiple of the screen refresh time TL, TI is the integration time, TC is the
recaptured frame length, and φ is the phase term.

rate of FL = 1/TL. The sequence is recaptured with a camcorder to
obtain Y = {Yj}, j = 1, ..., J , with a frame rate of FC = 1/TC .
Each frame Yj is obtained by integrating the light that hits the cam-
era sensor over a time window TI . Since the monitor and the camera
are not synchronized, the start of the recapturing process is delayed
by a phase term φ.

In order to fully understand the practical implications of our
problem formulation, let us consider inner workings of the moni-
tor and camera system. First of all, based on current technologies
it is possible to approximate the functional behavior of an LCD dis-
play as a system in which all the pixels are simultaneously refreshed
at intervals of TL, with negligible switching time for our purposes.
Because of this, no evident recapture footprints such as Cathode Ray
Tube scan-line artifacts are generated at refresh time. Moreover, in
order to display the video at the correct frame-rate, the condition FL

(mod FS) = 0 must in principle be verified. Indeed, the length
of a displayed video frame TS should match a multiple of the re-
fresh time TL. When this condition is not verified, the displayed
sequence must be edited using either frame-interpolation or frame-
repetition. Both techniques however alter the temporal correlation of
the sequence introducing detectable artifacts. Detecting recapturing
when FL (mod FS) = 0 is then more difficult, since there are no
additional artifacts to rely on.

Regarding the camera integration window TI , this can in princi-
ple be set arbitrarily. However, some general practical rules have to
be observed: if TI is too high, moving objects within the scene may
be affected by motion blur; if TI is too low, the resulting video will
appear less smooth and also noisy, since the equivalent ISO setting
of the sensor needs to be increased to capture enough light. Since
low-end cameras typically do not allow the user to set this parame-
ter, a general rule of thumb is that TI = TC/2. However, the value
of TI does not negatively affect the validity of our model or the per-
formance of our detector.

Bearing this in mind, the j-th camcorder frame Yj depends on
what is displayed on the LCD during the integration window TI .
More specifically, we can distinguish two cases:

1. If the integration window falls either completely within the
bounds of the i-th frame or between two frames of the original
sequence, which are identical because of frame repetition (i.e,
between Xi and Xi+1 = Xi), then Yj = Xi.

2. If the integration window covers the transition between two
frames Xi and Xi+1, then Yj is a weighted average between
the two displayed frames. In particular, if within TI the frame
Xi is kept for a time T 0

I , and the frame Xi+1 is kept for T 1
I ,

such that TI = T 0
I + T 1

I , the resulting camera frame can be
expressed as Yj = αXi+(1−α)Xi+1, where α = T 0

I /TI ∈
(0 : 1). In this case, a ghosting artifact is present on Yj (as
shown in Figure 3b).

Depending on the relative magnitude of the parameters FS and
FC , the ghosting artifact may affect the recaptured sequence dif-
ferently, as shown in Figure 2. We will now show how all cases
are either of no practical relevance or can be easily solved, relying
on previously proposed methods, with the exception of the scenario
where FC = FS .

If FC ≪ FS (Figure 2a), the recaptured sequence consists
solely of heavily ghosted frames, and some frames from the original
sequence are skipped. In this scenario, Y is too distorted to be
used as a copy of X by a malicious user. Conversely, in order to
have FC ≫ FS (Figure 2b), the used camera should be either a
high-end, high-speed camera, or the video sequence should have a
very low frame-rate, which are unlikely conditions. Moreover, such
a recaptured sequence would consist of many consecutive repeated
frames. If FC ≃ FS (Figures 2c and 2d), Y consists of a mixture
of ghosted frames and original frames. The occurrence of ghosted
frames forms a pattern, with a period depending on the relationship
between FS and FC . Since ghosted frames are interpolated versions
of original frames, and this interpolation appears periodically in the
sequence, these sequences can be detected using an interpolation
detector such as the one proposed in [12].

The only case of practical importance without a known solution
is therefore when FC = FS . In this study, we propose a method that
focuses on this challenging scenario. Indeed, depending on the time
delay φ, the time window TI may fall either within a single frame
window Xi (Figure 2e) or between two consecutive frames Xi and
Xi+1 (Figure 2f). In the first case, we obtain Y = X, which is
the only situation in which nothing can be detected. In the second
scenario, the ghosting artifact is present on all recaptured frames
with the same magnitude, without any non-ghosted frames perfectly
recaptured from the input signal being available.

2.2. Ghosting Artifact Model

The presence of the ghosting artifact is the footprint we use to de-
tect recapturing. In order to exploit it, we model the artifact as the
outcome of a filtering operation. Let us define a mapping between
the indexes i and j of original and recaptured frames respectively,
such that i = j and Yi = αXi + (1 − α)Xi+1, where α repre-
sents the relative proportion of Xi within the integration window TI .
This is possible since we only consider the case FC = FS . Let us
then consider the k-th object in Xi (e.g., the rectangle in Figure 3a)
whose position moves according to the motion of a characteristic
point pk

i = (mk
i , n

k
i). If the object moves in time such that it ap-

pears in pk
i+1 = (mk

i+1, n
k
i+1) in Xi+1 we can compute the motion

vector vk
i = pk

i+1 − pk
i . If we capture the screen during the tran-

sition between Xi and Xi+1, in the recaptured frame Yi we observe
a ghosted version of the object (e.g., the ghosted rectangle in Fig-
ure 3b). Indeed, we are averaging two pictures of the same object at
two different positions related by the motion vector vk

i . If the motion
can be locally approximated by a translation (e.g., small motion with
respect to FC), and we consider a patch P k

i in the neighborhood of
pk
i , the same ghosted patch can be obtained by convolution as

P̂ k
i = P k

i ∗Hk
i (α), (1)

where Hk
i (α) is a two-dimensional filter composed by two Dirac

pulses: the first pulse of magnitude α in the origin of the filter (i.e,
(0, 0)) takes into account the contribution of the patch centered in
pk
i ; the second one of magnitude (1− α) is located at vk

i , and takes
into account the contribution of the patch in pk

i+1. Figure 3c shows

the result of the convolution P k
i ∗Hk

i (α).

Y1 Y2 Y3

X1 X2 X3

φ

t

t

TS TL

TC TI

Fig. 1: Recapturing model showing frames Xi on a monitor (top) and recap-
tured frames Yj (bottom). TS is the nominal original frame length, which is
multiple of the screen refresh time TL, TI is the integration time, TC is the
recaptured frame length, and φ is the phase term.

rate of FL = 1/TL. The sequence is recaptured with a camcorder to
obtain Y = {Yj}, j = 1, ..., J , with a frame rate of FC = 1/TC .
Each frame Yj is obtained by integrating the light that hits the cam-
era sensor over a time window TI . Since the monitor and the camera
are not synchronized, the start of the recapturing process is delayed
by a phase term φ.

In order to fully understand the practical implications of our
problem formulation, let us consider inner workings of the moni-
tor and camera system. First of all, based on current technologies
it is possible to approximate the functional behavior of an LCD dis-
play as a system in which all the pixels are simultaneously refreshed
at intervals of TL, with negligible switching time for our purposes.
Because of this, no evident recapture footprints such as Cathode Ray
Tube scan-line artifacts are generated at refresh time. Moreover, in
order to display the video at the correct frame-rate, the condition FL

(mod FS) = 0 must in principle be verified. Indeed, the length
of a displayed video frame TS should match a multiple of the re-
fresh time TL. When this condition is not verified, the displayed
sequence must be edited using either frame-interpolation or frame-
repetition. Both techniques however alter the temporal correlation of
the sequence introducing detectable artifacts. Detecting recapturing
when FL (mod FS) = 0 is then more difficult, since there are no
additional artifacts to rely on.

Regarding the camera integration window TI , this can in princi-
ple be set arbitrarily. However, some general practical rules have to
be observed: if TI is too high, moving objects within the scene may
be affected by motion blur; if TI is too low, the resulting video will
appear less smooth and also noisy, since the equivalent ISO setting
of the sensor needs to be increased to capture enough light. Since
low-end cameras typically do not allow the user to set this parame-
ter, a general rule of thumb is that TI = TC/2. However, the value
of TI does not negatively affect the validity of our model or the per-
formance of our detector.

Bearing this in mind, the j-th camcorder frame Yj depends on
what is displayed on the LCD during the integration window TI .
More specifically, we can distinguish two cases:

1. If the integration window falls either completely within the
bounds of the i-th frame or between two frames of the original
sequence, which are identical because of frame repetition (i.e,
between Xi and Xi+1 = Xi), then Yj = Xi.

2. If the integration window covers the transition between two
frames Xi and Xi+1, then Yj is a weighted average between
the two displayed frames. In particular, if within TI the frame
Xi is kept for a time T 0

I , and the frame Xi+1 is kept for T 1
I ,

such that TI = T 0
I + T 1

I , the resulting camera frame can be
expressed as Yj = αXi+(1−α)Xi+1, where α = T 0

I /TI ∈
(0 : 1). In this case, a ghosting artifact is present on Yj (as
shown in Figure 3b).

Depending on the relative magnitude of the parameters FS and
FC , the ghosting artifact may affect the recaptured sequence dif-
ferently, as shown in Figure 2. We will now show how all cases
are either of no practical relevance or can be easily solved, relying
on previously proposed methods, with the exception of the scenario
where FC = FS .

If FC ≪ FS (Figure 2a), the recaptured sequence consists
solely of heavily ghosted frames, and some frames from the original
sequence are skipped. In this scenario, Y is too distorted to be
used as a copy of X by a malicious user. Conversely, in order to
have FC ≫ FS (Figure 2b), the used camera should be either a
high-end, high-speed camera, or the video sequence should have a
very low frame-rate, which are unlikely conditions. Moreover, such
a recaptured sequence would consist of many consecutive repeated
frames. If FC ≃ FS (Figures 2c and 2d), Y consists of a mixture
of ghosted frames and original frames. The occurrence of ghosted
frames forms a pattern, with a period depending on the relationship
between FS and FC . Since ghosted frames are interpolated versions
of original frames, and this interpolation appears periodically in the
sequence, these sequences can be detected using an interpolation
detector such as the one proposed in [12].

The only case of practical importance without a known solution
is therefore when FC = FS . In this study, we propose a method that
focuses on this challenging scenario. Indeed, depending on the time
delay φ, the time window TI may fall either within a single frame
window Xi (Figure 2e) or between two consecutive frames Xi and
Xi+1 (Figure 2f). In the first case, we obtain Y = X, which is
the only situation in which nothing can be detected. In the second
scenario, the ghosting artifact is present on all recaptured frames
with the same magnitude, without any non-ghosted frames perfectly
recaptured from the input signal being available.

2.2. Ghosting Artifact Model

The presence of the ghosting artifact is the footprint we use to de-
tect recapturing. In order to exploit it, we model the artifact as the
outcome of a filtering operation. Let us define a mapping between
the indexes i and j of original and recaptured frames respectively,
such that i = j and Yi = αXi + (1 − α)Xi+1, where α repre-
sents the relative proportion of Xi within the integration window TI .
This is possible since we only consider the case FC = FS . Let us
then consider the k-th object in Xi (e.g., the rectangle in Figure 3a)
whose position moves according to the motion of a characteristic
point pk

i = (mk
i , n

k
i). If the object moves in time such that it ap-

pears in pk
i+1 = (mk

i+1, n
k
i+1) in Xi+1 we can compute the motion

vector vk
i = pk

i+1 − pk
i . If we capture the screen during the tran-

sition between Xi and Xi+1, in the recaptured frame Yi we observe
a ghosted version of the object (e.g., the ghosted rectangle in Fig-
ure 3b). Indeed, we are averaging two pictures of the same object at
two different positions related by the motion vector vk

i . If the motion
can be locally approximated by a translation (e.g., small motion with
respect to FC), and we consider a patch P k

i in the neighborhood of
pk
i , the same ghosted patch can be obtained by convolution as

P̂ k
i = P k

i ∗Hk
i (α), (1)

where Hk
i (α) is a two-dimensional filter composed by two Dirac

pulses: the first pulse of magnitude α in the origin of the filter (i.e,
(0, 0)) takes into account the contribution of the patch centered in
pk
i ; the second one of magnitude (1− α) is located at vk

i , and takes
into account the contribution of the patch in pk

i+1. Figure 3c shows

the result of the convolution P k
i ∗Hk

i (α).

Y1 Y2 Y3

X1 X2 X3

φ

t

t

TS TL

TC TI

Fig. 1: Recapturing model showing frames Xi on a monitor (top) and recap-
tured frames Yj (bottom). TS is the nominal original frame length, which is
multiple of the screen refresh time TL, TI is the integration time, TC is the
recaptured frame length, and φ is the phase term.

rate of FL = 1/TL. The sequence is recaptured with a camcorder to
obtain Y = {Yj}, j = 1, ..., J , with a frame rate of FC = 1/TC .
Each frame Yj is obtained by integrating the light that hits the cam-
era sensor over a time window TI . Since the monitor and the camera
are not synchronized, the start of the recapturing process is delayed
by a phase term φ.

In order to fully understand the practical implications of our
problem formulation, let us consider inner workings of the moni-
tor and camera system. First of all, based on current technologies
it is possible to approximate the functional behavior of an LCD dis-
play as a system in which all the pixels are simultaneously refreshed
at intervals of TL, with negligible switching time for our purposes.
Because of this, no evident recapture footprints such as Cathode Ray
Tube scan-line artifacts are generated at refresh time. Moreover, in
order to display the video at the correct frame-rate, the condition FL

(mod FS) = 0 must in principle be verified. Indeed, the length
of a displayed video frame TS should match a multiple of the re-
fresh time TL. When this condition is not verified, the displayed
sequence must be edited using either frame-interpolation or frame-
repetition. Both techniques however alter the temporal correlation of
the sequence introducing detectable artifacts. Detecting recapturing
when FL (mod FS) = 0 is then more difficult, since there are no
additional artifacts to rely on.

Regarding the camera integration window TI , this can in princi-
ple be set arbitrarily. However, some general practical rules have to
be observed: if TI is too high, moving objects within the scene may
be affected by motion blur; if TI is too low, the resulting video will
appear less smooth and also noisy, since the equivalent ISO setting
of the sensor needs to be increased to capture enough light. Since
low-end cameras typically do not allow the user to set this parame-
ter, a general rule of thumb is that TI = TC/2. However, the value
of TI does not negatively affect the validity of our model or the per-
formance of our detector.

Bearing this in mind, the j-th camcorder frame Yj depends on
what is displayed on the LCD during the integration window TI .
More specifically, we can distinguish two cases:

1. If the integration window falls either completely within the
bounds of the i-th frame or between two frames of the original
sequence, which are identical because of frame repetition (i.e,
between Xi and Xi+1 = Xi), then Yj = Xi.

2. If the integration window covers the transition between two
frames Xi and Xi+1, then Yj is a weighted average between
the two displayed frames. In particular, if within TI the frame
Xi is kept for a time T 0

I , and the frame Xi+1 is kept for T 1
I ,

such that TI = T 0
I + T 1

I , the resulting camera frame can be
expressed as Yj = αXi+(1−α)Xi+1, where α = T 0

I /TI ∈
(0 : 1). In this case, a ghosting artifact is present on Yj (as
shown in Figure 3b).

Depending on the relative magnitude of the parameters FS and
FC , the ghosting artifact may affect the recaptured sequence dif-
ferently, as shown in Figure 2. We will now show how all cases
are either of no practical relevance or can be easily solved, relying
on previously proposed methods, with the exception of the scenario
where FC = FS .

If FC ≪ FS (Figure 2a), the recaptured sequence consists
solely of heavily ghosted frames, and some frames from the original
sequence are skipped. In this scenario, Y is too distorted to be
used as a copy of X by a malicious user. Conversely, in order to
have FC ≫ FS (Figure 2b), the used camera should be either a
high-end, high-speed camera, or the video sequence should have a
very low frame-rate, which are unlikely conditions. Moreover, such
a recaptured sequence would consist of many consecutive repeated
frames. If FC ≃ FS (Figures 2c and 2d), Y consists of a mixture
of ghosted frames and original frames. The occurrence of ghosted
frames forms a pattern, with a period depending on the relationship
between FS and FC . Since ghosted frames are interpolated versions
of original frames, and this interpolation appears periodically in the
sequence, these sequences can be detected using an interpolation
detector such as the one proposed in [12].

The only case of practical importance without a known solution
is therefore when FC = FS . In this study, we propose a method that
focuses on this challenging scenario. Indeed, depending on the time
delay φ, the time window TI may fall either within a single frame
window Xi (Figure 2e) or between two consecutive frames Xi and
Xi+1 (Figure 2f). In the first case, we obtain Y = X, which is
the only situation in which nothing can be detected. In the second
scenario, the ghosting artifact is present on all recaptured frames
with the same magnitude, without any non-ghosted frames perfectly
recaptured from the input signal being available.

2.2. Ghosting Artifact Model

The presence of the ghosting artifact is the footprint we use to de-
tect recapturing. In order to exploit it, we model the artifact as the
outcome of a filtering operation. Let us define a mapping between
the indexes i and j of original and recaptured frames respectively,
such that i = j and Yi = αXi + (1 − α)Xi+1, where α repre-
sents the relative proportion of Xi within the integration window TI .
This is possible since we only consider the case FC = FS . Let us
then consider the k-th object in Xi (e.g., the rectangle in Figure 3a)
whose position moves according to the motion of a characteristic
point pk

i = (mk
i , n

k
i). If the object moves in time such that it ap-

pears in pk
i+1 = (mk

i+1, n
k
i+1) in Xi+1 we can compute the motion

vector vk
i = pk

i+1 − pk
i . If we capture the screen during the tran-

sition between Xi and Xi+1, in the recaptured frame Yi we observe
a ghosted version of the object (e.g., the ghosted rectangle in Fig-
ure 3b). Indeed, we are averaging two pictures of the same object at
two different positions related by the motion vector vk

i . If the motion
can be locally approximated by a translation (e.g., small motion with
respect to FC), and we consider a patch P k

i in the neighborhood of
pk
i , the same ghosted patch can be obtained by convolution as

P̂ k
i = P k

i ∗Hk
i (α), (1)

where Hk
i (α) is a two-dimensional filter composed by two Dirac

pulses: the first pulse of magnitude α in the origin of the filter (i.e,
(0, 0)) takes into account the contribution of the patch centered in
pk
i ; the second one of magnitude (1− α) is located at vk

i , and takes
into account the contribution of the patch in pk

i+1. Figure 3c shows

the result of the convolution P k
i ∗Hk

i (α).

Paolo Bestagini

Acquisition-based footprints: re-capture

• Filter shape is derived from motion estimation

!49

Paolo Bestagini – ICIP 2013

Detector (non-periodic): algorithm

•  Step by step:
1.  Detect point-of-interest (corners)

2.  Motion estimation (dirac-filter shape)

13

Paolo Bestagini – ICIP 2013

Detector (non-periodic): algorithm

•  Step by step:
1.  Detect point-of-interest (corners)

2.  Motion estimation (dirac-filter shape)

13

Paolo Bestagini

Acquisition-based footprints: re-capture

• Method:
• Minimize a cost function to detect whether key-points underwent

“ghosting filtering”

• Results:
• Detection accuracy over 91%

Paolo Bestagini – ICIP 2013

Detector (non-periodic): rationale

•  A frame is possibly affected by ghosting

•  Is that compatible with the use of a ghosting filter?

12

=
?

*

Paolo Bestagini – ICIP 2013

Detector (non-periodic): rationale

•  A frame is possibly affected by ghosting

•  Is that compatible with the use of a ghosting filter?

12

=
?

*

Paolo Bestagini – ICIP 2013

Detector (non-periodic): rationale

•  A frame is possibly affected by ghosting

•  Is that compatible with the use of a ghosting filter?

12

=
?

*

!50

Paolo Bestagini

From which camera does the video come from?

!51

[Mandelli et al. EUSIPCO 2018]
[Mandelli et al. to be submitted]

Paolo Bestagini

Acquisition-based footprints: camera attribution

• Photo Response Non Uniformity:
• It enables linking images to devices

• How to:
• Extract noise pattern from images
• Compute correlation

!52

Paolo Bestagini

Acquisition-based footprints: camera attribution

• Application:
• Video compilation detection and segmentation

• Method:
• Compute cumulative correlation

!53

Taking into account these considerations, we can solve the
camera-attribution problem between the available fingerprint
estimate W(f) and the reference frame I

r

. It is worth noticing
that, following the theory in Sect. II and computing the frame-
variant NCC denoted as c(f) = ⇢(W

r

,W(f)I
r

), we can
observe this behavior:

• If f < r and the considered f frames do not belong to the
same shot of I

r

, c(f) is low and more or less constant.
As a matter of fact, W(f) is a completely wrong estimate
of the fingerprint related to the reference shot and does
not correlate with W

r

.
• At a given f r, W(f) starts being built exploiting

noise residuals from frames belonging to the very same
device of I

r

. Hence, W(f) starts matching W
r

, and c(f)
begins to increase.

• After all frames of the reference device have been scanned
(i.e., the f -th and r-th frames come from different de-
vices), c(f) starts dropping, since W(f) begins contain-
ing contributions from noises not correlating anymore
with W

r

.
For the sake of clarity, we report in Fig. 2 an example of

c(f) behavior over a video composed by three splicing portions
(shown in Fig. 1):

• S1, composed by frames I
f

, f 2 [1, 450];
• S2, composed by frames I

f

, f 2 [451, 1050];
• S3, composed by frames I

f

, f 2 [1051, 1650].
If the reference frame is I100 (i.e., belonging to S1), c(f)
increases up to f = 450, then it starts dropping as frames
after I450 do not belong to S1 anymore. If the reference frame
is I700 (i.e., belonging to S2), c(f) is almost flat for f 450

(i.e., frames belonging to S1), shows an increasing behavior
for 450 < f 1050 (i.e., frames belonging to S2), then it
drops again for f > 1050 (i.e., frames belonging to S3). A
coherent behavior can be observed if we consider reference
frame I1300.

Bearing this in mind, the proposed pipeline for blind de-
tection and localization of temporal splicing consists of the
following steps: (i) selecting the reference frame – randomly
select one reference frame from the video and compute
c(f), f 2 [1, N

f

]; (ii) clustering frames – group together
frames for which c(f) locally increases and delete the selected
group from the entire video; iterate steps (i) and (ii) until
almost all video frames have been clustered in different groups;
(iii) clustering shots – to counteract the problem of over-
estimating the number of splicing shots, cluster the groups
of frames with higher inter-correlation; (iv) assigning left-out
frames – assign the remaining frames to the best-matching
shot. It follows an exhaustive description of each step.

A. Selecting the Reference Frame

Since information about temporal segmentation is not avail-
able, the only way for selecting the reference frame is to pick
it up randomly. Actually, interpretation of c(f) is not always
straightforward like in Fig. 2. As a matter of fact, correlation
c(f) can exhibit an increasing behavior even for frames not

Fig. 2: Example of c(f) behavior over the video shown in Fig. 1.

belonging to the same shot of I
r

, as well as multiple local
maxima (e.g., due to correlated frame content). Therefore,
to increase the algorithm’s robustness, we perform multiple
experiments, picking up a pool of different reference frames.

The algorithm extracts R possible I
r

frames, and computes
c
r

(f) for each realization r 2 [1, R]. We define three quantities
useful to evaluate c

r

(f) goodness:
• The maximum of c

r

(f), defined as M
r

= max

f

(c
r

(f)).

• The frame index related to the maximum c
r

(f) value,
defined as m

r

= argmax

f

(c
r

(f)).

• The largest set of frame indexes for which c
r

(f) shows
a monotonically increasing behavior, defined as �

r

.
The best reference r̃ out of the R ones is selected as the

realization with highest M
r

, given that m
r

2 �

r

. This ensures
that frames whose index lies in �

r

belong to a single device.
In our experiments, we chose R = 10 as a good trade-off
between algorithm’s robustness and efficiency.

B. Clustering Frames

Once the best realization r̃ has been selected, we average
noise residuals of frames belonging to �

r̃

, in order to estimate
a fingerprint ˆK

n

which will be related to a new shot ˆS
n

.
To cluster frames together, we follow the standard PRNU-

based source attribution pipeline: being ˆK
n

the estimated
fingerprint, noises from all video frames are correlated with
ˆK

n

. We assign to the new shot ˆS
n

all frames for which NCC
is above a predefined threshold.

Next operation consists in removing the estimated group of
frames from the video sequence, and iterate steps (i) and (ii)
until remaining frames are less than a default value (e.g., 100
in our experiments).

C. Clustering Shots

Estimation of true fingerprint from a small subset of frames
is far from being an easy task. For this reason, it some-
times happens that frames belonging to the same original
shot are not clustered together, due to low correlation values.
Therefore, we usually end up with an estimated compilation
ˆV = {ˆS1, ˆS2, ..., ˆSMs}, whose number of shots M

s

is higher
than the true one (i.e., M

s

> N
s

).
Some control on over-estimation is thus necessary. On the

other hand, it is still better over-segmenting the compilation

Paolo Bestagini

Acquisition-based footprints: camera attribution

• Challenges:
• Aggressive coding
• Digital video stabilizaion

!54

Paolo Bestagini

Number of
compressions

Type of
codec

Image
splicing

Video
copy-paste

Video
copy-move

Re-capture

Work organisation

Editing-based
footprints

Acquisition-based
footprints

Video
copy-move

Re-capture

Paolo Bestagini

Number of
compressions

Type of
codec

Image
splicing

Video
copy-paste

Video
copy-move

Re-capture

Work organisation

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Video
forensics

Number of
compressions Type of

codec

Image
splicing

Video
copy-paste

Video
copy-move

Re-capture

Paolo Bestagini

Put everything together !56

Number of
compressions

Type of
codec

Image
splicing

Video
copy-paste

Video
copy-move

Re-capture

=2?

input video

no

yes

no

1

yes

many

yes

no

Paolo Bestagini

From one to many

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Video
forensics

Number of
compressions

Type of
codec

Image
splicing

Video
copy-paste

Video
copy-move

Re-capture

!57

Paolo Bestagini

From one to many

Coding-based
footprints

Editing-based
footprints

Acquisition-based
footprints

Video
forensics

Number of
compressions

Type of
codec

Image
splicing

Video
copy-paste

Video
copy-move

Re-capture

!57

Paolo Bestagini

From one to many !58

Paolo Bestagini

From one to many !58

Paolo Bestagini

Applications !59

Paolo Bestagini

Coding-based applications

• Which video has been more processed?
• Extend Benford’s law to base-N first digits
• Fit logarithmic curve
• Check goodness of fit (processing age)
• The better, the younger!

!60

[Milani et al. EUSIPCO 2017]

Paolo Bestagini

Acquisition-based applications

• Which views are the redundant?
• match video PRNUs to detect those from same device

!61

[Lameri et al. ICIP 2017]

Paolo Bestagini

Parent reconstruction

• Who is my parent?
• It is possible that we are analysing a short shot (child) of a longer

sequence (parent)
• e.g., a VIP speech

• Can we find other (partially overlapping) child sequences to
reconstruct the parent?

!62
[Bestagini et al. ICIP 2014]

Paolo Bestagini

Parent reconstruction

• Download a set of videos related to the topic under analysis:

!63

Paolo Bestagini

Parent reconstruction

• Download a set of videos related to the topic under analysis:

!63

Paolo Bestagini

Parent reconstruction

• Analyse each pair of sequences exploiting a robust hash algorithm
• A sequence is split in overlapping time segments of 64 frames each

1 frame

Temporal axis

!64

Paolo Bestagini

Parent reconstruction

• Analyse each pair of sequences exploiting a robust hash algorithm
• each block is described by a binary hash

• Every frame in the block is spatially resized to 32x32 pixels
• The block now measures 32x32x64 pixels

• 3D DCT is applied to the block
• 64 DCT coefficients are selected
• This 64 DCT coefficients are binarized according to their median value

• 32 are set to zero, 32 are set to 1
• The hash is this 64 binary string

Block of 64 frames

!65

Paolo Bestagini

Parent reconstruction

• Analyse each pair of sequences exploiting a robust hash algorithm
• Hashes of different blocks are compared by computing hamming

distance

0 8 16 24 32 40 48 56
0

0.05

0.1

0.15

0.2

Hash Distance

N
o
rm

.
O

cc
u

rr
en

ci
es

Near Dupl.
Non−Near Dupl.

Fig. 5: Histogram of hash distances between near-duplicate (dark
blue) and non-near-duplicate (light blue) blocks of video frames.

mother, news, paris, and soccer. We applied one of the following
transformations to each sequence: blurring, brightness adjustment,
contrast enhancement, spatial cropping, AVC/H.264 coding, logo
insertion, and rotation. By varying the parameters used for these
transformations, we obtained a total number of 424 test sequences1.
In order to test the temporal alignment, we also trimmed the se-
quences by dropping frames from the leading and trailing part.

The second dataset was used to test the accuracy of the whole
reconstruction algorithm. The dataset consists of four parent se-
quences, namely sign irene, highway, mother (long version) and stu-

dents, with more than 540 frames each. Then, we created K = 6

sequences Y1, . . . ,Y6 obtained by splicing together (in random or-
der) six shots: one shot from each parent sequence (processed with
the same kind of transformations used in the first dataset), and two
shots taken from an external set of sequences. Each Yk had a to-
tal length between 800 and 1700 frames. The set of shots extracted
from each parent sequence is such that, for each pair of shots, they
overlap for at least 90 frames (3 seconds at 30fps). We repeated this
process 100 times so as to compute averaged results over several
realizations.

Finally, the third dataset includes real-world sequences down-
loaded from YouTube representing videos related to different events.
More specifically we considered K = 9 sequences related to the
“Boston marathon bombing” event, and K = 8 related to the “Me-
teorite hits Russia” events. Manual inspection revealed the presence
of one and three parent sequences, respectively.

The robust hashing algorithm adopted in our work was evaluated
on the first dataset. Figure 5 shows the histogram of hash distances
computed between all the near-duplicate (dark blue) and non-near-
duplicate (light blue) blocks of the synthetically created sequences.
From this study, we set ⌧ = 16 and tested the algorithm adopted to
extract segments corresponding to matching subsequences from the
analysis of matrices Dk1,k2 . In this controlled dataset, the correct
alignment is known and represented as a ground truth segment that
can be compared with the segment estimated by our algorithm. A
point in the (n1, n2)-space is considered to be a true positive, if it
belongs to the ground truth segment and lies at a distance equal to
at most three frames from the estimated segment in both directions.
The true positive rate is obtained by dividing this number by the
number of points that belong to the ground truth segment. The false
positive rate is defined similarly, with the role of ground truth and
estimated segments reversed. In our experiments, we measured a
false positive rate equal to 0.0001, that is, virtually all the non-near-
duplicate blocks were correctly identified as such. The true posi-
tive rate was equal to 0.85, indicating that the vast majority of near-
duplicate blocks were correctly identified. We observed that this was
due to the fact that the estimated segment was slightly shorter, on av-
erage, than the ground truth segment. However, this is not a major
issue in the overall method, since the start and end points of the esti-
mated segment are then extended up to the nearest scene change.

1Additional material available at: http://tinyurl.com/oomvaxt

50 70 90 110 130 150 170 190 210 230 250
0.88

0.9

0.92

0.94

0.96

0.98

Length of matching subsequence (number of frames)

ac
cu

ra
cy

Perfect alignment
5 frames tolerance

Fig. 6: Near-duplicate alignment accuracy when varying the length
of the matching subsequence.

The near-duplicate alignment algorithm was evaluated by inves-
tigating its accuracy when considering matching subsequences of
variable length. This is illustrated in Figure 6, which expresses the
accuracy as a function of the length of the matching subsequence.
The accuracy indicates the fraction of times two sequences are ex-
actly aligned. Figure 6 also shows the case in which an error of 5
frames is tolerated. The results confirm the intuition that the longer
the matching subsequence, the more accurate the alignment. In
the two cases, when two sequences share more than 90 frames, the
alignment was correctly estimated in more than, respectively, 93%
(perfect alignment) and 96% (5% tolerance alignment) of the tested
cases.

In order to evaluate the overall parent reconstruction method, we
considered each of the K = 6 sequences Yk and checked whether
the extracted shots were correctly assigned to the corresponding par-
ent sequences. For each of the 100 realizations, we had six shots
belonging to each one of the P = 4 parent sequences. We evaluated
the percentage of times we were able to perform the correct assign-
ment between shots and parents. It turned out that we were able to
assign all the six shots to their parent sequence in 85% of the cases.
On the other hand, in more than the 90% of the cases we were able
to assign at least five out of six shots to each parent.

Finally, we also tested the parent reconstruction method on
the real-world dataset of sequences downloaded from YouTube. In
the “Boston marathon bombing” event we extracted two parent se-
quences, one of which of 1005 frames by automatically aggregating
four shots, each having between 111 and 600 frames. Similarly,
in the “Meteorite hits Russia” event, three parent sequences were
identified from eight observed sequences. To visually illustrate the
output produced by the proposed method, we invite the reader to
watch the reconstructed parent sequences that we made available
online1.

The possibility of reconstructing parent sequences in a real-
world scenario allows us to increase the temporal coverage of an
event under analysis. This can be useful to provide additional infor-
mation related to an event, e.g., in case of criminal investigations.
Moreover, this gives an interesting insight on the way content is
reused, e.g., to understand whether newscasts decided to broadcast
only partial news related to important events.

4. CONCLUSIONS
We presented a method for the reconstruction of one or more parent
sequences, given a set of partially overlapped near-duplicate video
shots reused in other sequences. The use of the proposed method
allows one to study how content is reused and to recover original
content when it is no longer available. Future work will be devoted to
the study causal relationships between reused shots, thus extending
video phylogeny to address multiple parenting.

Future work will focus on studying causal relationships between
reused videos and extending upon our current solution to incorporate
video phylogeny analysis as well as multiple parenting relationship
refinements.

!66

Paolo Bestagini

Parent reconstruction

• Non-near duplicates
• High distance
• No regular patterns

• Near duplicates
• Low distances = matching
• Start and end points used for alignment

• Compute the distance between every block of sequence1 and every
block of sequence2

Y1

Y2

Ỹ1
1 Ỹ2

1

Ỹ1
2 Ỹ2

2

(a)

Y1

Y2

Y1
1

Y1
2 Y2

2

Y2
1

(b)

Y1

Y2

Y1
1

Y1
2 Y2

2

Y2
1

(c)

Fig. 2: An example showing the near-duplicate matching, alignment and shot extraction when comparing two sequences.

n
1

n
2

100 200 300 400

100

200

300

400

n
1

n
2

100 200 300 400

100

200

300

400 0

8

16

24

32

40

48

56

64

Fig. 3: Distance matrices Dk1,k2(n1, n2). Pairs of sequences con-
taining (left) or not containing (right) near-duplicate subsequences.

n
1

n
2

100 200 300 400

100

200

300

400

(a)

n
1

n
2

100 200 300 400

100

200

300

400

(b)

n
1

n
2

100 200 300 400

100

200

300

400

(c)

Fig. 4: Examples of Dk1,k2(n1, n2) before (a) and after (b) mor-
phological opening. (c) Estimated segments representing matching
subsequences.

3. For each connected component, analyze the underlying val-
ues of Dk1,k2 and determine the coordinates of the minimum
value along every row and column (indicated as black crosses
in Figure 4c). Then, fit a line passing through these minima.

Note that, since the analysis is performed on every connected com-
ponent in Step 2, the algorithm is able to find more than one segment
in each matrix, as illustrated in Figure 4c for the pair Y1 and Y2.

Near-duplicate extraction: The analysis of the segments iden-
tified at the previous step reveals which parts of the sequences Yk1

and Yk2 are near-duplicates. Let us denote with (s1, s2) the start
point of a segment, and with (e1, e2) its end point. This means
that the frames of Yk1 , {Yk1(s1), . . . ,Yk1(e1 + 63)}, are near-
duplicates of the block of frames of Yk2 , {Yk2(s2), . . . ,Yk2(e2 +
63)}, where the constant value 63 considers the fact that hashes
are computed on blocks of 64 frames. As indicated in Figure 2a,
two correspondences are identified when considering the pair of se-
quences Y1 and Y2, namely ˜Y1

1 $ ˜Y1
2 and ˜Y2

1 $ ˜Y2
2 . In general,

˜Yi
k denotes the i-th subsequence in sequence Yk, which is found to

be matching with another subsequence. Without loss of generality,
we assign the index i based on the index of the first frame in ˜Yi

k.
Near-duplicate alignment: Once ˜Yk1 and ˜Yk2 are extracted,

we perform an additional step of fine temporal alignment between
the shots. Indeed, the estimation of the start and end points of a seg-
ment from the matrix Dk1,k2 is affected by noise due to different
sources: i) the limited temporal resolution of the hash, which groups
together blocks of 64 frames; and ii) the uncertain localization of
local minima in Dk1,k2 . To this purpose, we resort to a monodimen-

sional description of a video over time, inspired by the work in [17].
More specifically, given an arbitrary video sequence Y, we compute
the difference between the average luminance of adjacent frames as

l(n) = avgluma(Y(n))� avgluma(Y(n� 1)), (2)

where avgluma(.) extracts the average of the luminance component
of a frame. The alignment between two subsequences ˜Yi1

k1
and ˜Yi2

k2

containing a matching near-duplicate subsequence is performed by
looking at the position of the highest peak of the phase-correlation
between li1k1

and li2k2
. That is,

ni1,i2
k1,k2

= argmax

n
F�1

"
Li1

k1
· Li2⇤

k2

|Li1
k1

· Li2⇤
k2

|

#
(n), (3)

where Li
k = F [lik] denotes the Fourier transform, ‘ ⇤ ’ indicates the

complex conjugate operator, and ‘ · ’ the element-wise product.
Shot extraction: Given a near-duplicate matching shot ˜Yi

k, we
want to identify the shot in Yk that includes ˜Yi

k. To this end, we
extend ˜Yi

k to Yi
k, so that the latter encompasses a contiguous set

of frames including ˜Yi
k and delimited by scene changes. This is

illustrated in Figure 2b for the shots extracted from Y1 and Y2 in
our example. In our work, we identify scene changes when the av-
erage luminance suddenly changes from a frame to another. This is
achieved by thresholding l(n). Note that this step is necessary if we
want to reconstruct the parent sequence starting from partially over-
lapping shots. For example, shots X2

1 and X3
1 would be considered

to belong to different parent sequences if we neglected this simple,
yet important step. Indeed, it is the reuse of shot X4

1 that provides
the necessary link between X2

1 and X3
1.

Parent reconstruction: Once all the reused shots Yi
k have been

identified and temporally aligned with respect to each other, we need
to cluster together shots belonging to the same parent sequence. To
this purpose, we build a graph where every node represents a shot
Yi

k, and we link together pairs of nodes whose corresponding shots
share a common subsequence. Then, the topology of the resulting
graph is analyzed so that each connected component is assigned to a
parent sequence. For example, Figure 1 (right) shows the graph built
considering all the shots in Y1, Y2, Y3 and Y4. Two connected
components are identified, one for each parent sequence.

In order to reconstruct each parent sequence, for each connected
component of the graph, we select as root the node with the high-
est degree, and run a Depth-First Search (DFS) algorithm to find an
acyclic path traversing the graph. Shots are then re-aligned with the
root according to the selected path.

3. EXPERIMENTS AND RESULTS
In order to validate the proposed method, we considered three
datasets. The first dataset was used to evaluate individually the
different steps of the method and to determine the values of the
configuration parameters. This dataset consists of a pool of near-
duplicates generated starting from eight sequences of 300 frames
each at CIF spatial resolution, namely: city, crew, foreman, hall,

Y1

Y2

Ỹ1
1 Ỹ2

1

Ỹ1
2 Ỹ2

2

(a)

Y1

Y2

Y1
1

Y1
2 Y2

2

Y2
1

(b)

Y1

Y2

Y1
1

Y1
2 Y2

2

Y2
1

(c)

Fig. 2: An example showing the near-duplicate matching, alignment and shot extraction when comparing two sequences.

n
1

n
2

100 200 300 400

100

200

300

400

n
1

n
2

100 200 300 400

100

200

300

400 0

8

16

24

32

40

48

56

64

Fig. 3: Distance matrices Dk1,k2(n1, n2). Pairs of sequences con-
taining (left) or not containing (right) near-duplicate subsequences.

n
1

n
2

100 200 300 400

100

200

300

400

(a)

n
1

n
2

100 200 300 400

100

200

300

400

(b)

n
1

n
2

100 200 300 400

100

200

300

400

(c)

Fig. 4: Examples of Dk1,k2(n1, n2) before (a) and after (b) mor-
phological opening. (c) Estimated segments representing matching
subsequences.

3. For each connected component, analyze the underlying val-
ues of Dk1,k2 and determine the coordinates of the minimum
value along every row and column (indicated as black crosses
in Figure 4c). Then, fit a line passing through these minima.

Note that, since the analysis is performed on every connected com-
ponent in Step 2, the algorithm is able to find more than one segment
in each matrix, as illustrated in Figure 4c for the pair Y1 and Y2.

Near-duplicate extraction: The analysis of the segments iden-
tified at the previous step reveals which parts of the sequences Yk1

and Yk2 are near-duplicates. Let us denote with (s1, s2) the start
point of a segment, and with (e1, e2) its end point. This means
that the frames of Yk1 , {Yk1(s1), . . . ,Yk1(e1 + 63)}, are near-
duplicates of the block of frames of Yk2 , {Yk2(s2), . . . ,Yk2(e2 +
63)}, where the constant value 63 considers the fact that hashes
are computed on blocks of 64 frames. As indicated in Figure 2a,
two correspondences are identified when considering the pair of se-
quences Y1 and Y2, namely ˜Y1

1 $ ˜Y1
2 and ˜Y2

1 $ ˜Y2
2 . In general,

˜Yi
k denotes the i-th subsequence in sequence Yk, which is found to

be matching with another subsequence. Without loss of generality,
we assign the index i based on the index of the first frame in ˜Yi

k.
Near-duplicate alignment: Once ˜Yk1 and ˜Yk2 are extracted,

we perform an additional step of fine temporal alignment between
the shots. Indeed, the estimation of the start and end points of a seg-
ment from the matrix Dk1,k2 is affected by noise due to different
sources: i) the limited temporal resolution of the hash, which groups
together blocks of 64 frames; and ii) the uncertain localization of
local minima in Dk1,k2 . To this purpose, we resort to a monodimen-

sional description of a video over time, inspired by the work in [17].
More specifically, given an arbitrary video sequence Y, we compute
the difference between the average luminance of adjacent frames as

l(n) = avgluma(Y(n))� avgluma(Y(n� 1)), (2)

where avgluma(.) extracts the average of the luminance component
of a frame. The alignment between two subsequences ˜Yi1

k1
and ˜Yi2

k2

containing a matching near-duplicate subsequence is performed by
looking at the position of the highest peak of the phase-correlation
between li1k1

and li2k2
. That is,

ni1,i2
k1,k2

= argmax

n
F�1

"
Li1

k1
· Li2⇤

k2

|Li1
k1

· Li2⇤
k2

|

#
(n), (3)

where Li
k = F [lik] denotes the Fourier transform, ‘ ⇤ ’ indicates the

complex conjugate operator, and ‘ · ’ the element-wise product.
Shot extraction: Given a near-duplicate matching shot ˜Yi

k, we
want to identify the shot in Yk that includes ˜Yi

k. To this end, we
extend ˜Yi

k to Yi
k, so that the latter encompasses a contiguous set

of frames including ˜Yi
k and delimited by scene changes. This is

illustrated in Figure 2b for the shots extracted from Y1 and Y2 in
our example. In our work, we identify scene changes when the av-
erage luminance suddenly changes from a frame to another. This is
achieved by thresholding l(n). Note that this step is necessary if we
want to reconstruct the parent sequence starting from partially over-
lapping shots. For example, shots X2

1 and X3
1 would be considered

to belong to different parent sequences if we neglected this simple,
yet important step. Indeed, it is the reuse of shot X4

1 that provides
the necessary link between X2

1 and X3
1.

Parent reconstruction: Once all the reused shots Yi
k have been

identified and temporally aligned with respect to each other, we need
to cluster together shots belonging to the same parent sequence. To
this purpose, we build a graph where every node represents a shot
Yi

k, and we link together pairs of nodes whose corresponding shots
share a common subsequence. Then, the topology of the resulting
graph is analyzed so that each connected component is assigned to a
parent sequence. For example, Figure 1 (right) shows the graph built
considering all the shots in Y1, Y2, Y3 and Y4. Two connected
components are identified, one for each parent sequence.

In order to reconstruct each parent sequence, for each connected
component of the graph, we select as root the node with the high-
est degree, and run a Depth-First Search (DFS) algorithm to find an
acyclic path traversing the graph. Shots are then re-aligned with the
root according to the selected path.

3. EXPERIMENTS AND RESULTS
In order to validate the proposed method, we considered three
datasets. The first dataset was used to evaluate individually the
different steps of the method and to determine the values of the
configuration parameters. This dataset consists of a pool of near-
duplicates generated starting from eight sequences of 300 frames
each at CIF spatial resolution, namely: city, crew, foreman, hall,

sequence 1sequence 1

se
qu

en
ce

 2

se
qu

en
ce

 2

!67

Paolo Bestagini

Parent reconstruction

• Analyse each pair of sequences exploiting a robust hash algorithm:

!68

Paolo Bestagini

Parent reconstruction

• Analyse each pair of sequences exploiting a robust hash algorithm:

!68

Paolo Bestagini

Parent reconstruction

Y1

Y2

Ỹ1
1 Ỹ2

1

Ỹ1
2 Ỹ2

2

(a)

Y1

Y2

Y1
1

Y1
2 Y2

2

Y2
1

(b)

Y1

Y2

Y1
1

Y1
2 Y2

2

Y2
1

(c)

Fig. 2: An example showing the near-duplicate matching, alignment and shot extraction when comparing two sequences.

n
1

n
2

100 200 300 400

100

200

300

400

n
1

n
2

100 200 300 400

100

200

300

400 0

8

16

24

32

40

48

56

64

Fig. 3: Distance matrices Dk1,k2(n1, n2). Pairs of sequences con-
taining (left) or not containing (right) near-duplicate subsequences.

n
1

n
2

100 200 300 400

100

200

300

400

(a)

n
1

n
2

100 200 300 400

100

200

300

400

(b)

n
1

n
2

100 200 300 400

100

200

300

400

(c)

Fig. 4: Examples of Dk1,k2(n1, n2) before (a) and after (b) mor-
phological opening. (c) Estimated segments representing matching
subsequences.

3. For each connected component, analyze the underlying val-
ues of Dk1,k2 and determine the coordinates of the minimum
value along every row and column (indicated as black crosses
in Figure 4c). Then, fit a line passing through these minima.

Note that, since the analysis is performed on every connected com-
ponent in Step 2, the algorithm is able to find more than one segment
in each matrix, as illustrated in Figure 4c for the pair Y1 and Y2.

Near-duplicate extraction: The analysis of the segments iden-
tified at the previous step reveals which parts of the sequences Yk1

and Yk2 are near-duplicates. Let us denote with (s1, s2) the start
point of a segment, and with (e1, e2) its end point. This means
that the frames of Yk1 , {Yk1(s1), . . . ,Yk1(e1 + 63)}, are near-
duplicates of the block of frames of Yk2 , {Yk2(s2), . . . ,Yk2(e2 +
63)}, where the constant value 63 considers the fact that hashes
are computed on blocks of 64 frames. As indicated in Figure 2a,
two correspondences are identified when considering the pair of se-
quences Y1 and Y2, namely ˜Y1

1 $ ˜Y1
2 and ˜Y2

1 $ ˜Y2
2 . In general,

˜Yi
k denotes the i-th subsequence in sequence Yk, which is found to

be matching with another subsequence. Without loss of generality,
we assign the index i based on the index of the first frame in ˜Yi

k.
Near-duplicate alignment: Once ˜Yk1 and ˜Yk2 are extracted,

we perform an additional step of fine temporal alignment between
the shots. Indeed, the estimation of the start and end points of a seg-
ment from the matrix Dk1,k2 is affected by noise due to different
sources: i) the limited temporal resolution of the hash, which groups
together blocks of 64 frames; and ii) the uncertain localization of
local minima in Dk1,k2 . To this purpose, we resort to a monodimen-

sional description of a video over time, inspired by the work in [17].
More specifically, given an arbitrary video sequence Y, we compute
the difference between the average luminance of adjacent frames as

l(n) = avgluma(Y(n))� avgluma(Y(n� 1)), (2)

where avgluma(.) extracts the average of the luminance component
of a frame. The alignment between two subsequences ˜Yi1

k1
and ˜Yi2

k2

containing a matching near-duplicate subsequence is performed by
looking at the position of the highest peak of the phase-correlation
between li1k1

and li2k2
. That is,

ni1,i2
k1,k2

= argmax

n
F�1

"
Li1

k1
· Li2⇤

k2

|Li1
k1

· Li2⇤
k2

|

#
(n), (3)

where Li
k = F [lik] denotes the Fourier transform, ‘ ⇤ ’ indicates the

complex conjugate operator, and ‘ · ’ the element-wise product.
Shot extraction: Given a near-duplicate matching shot ˜Yi

k, we
want to identify the shot in Yk that includes ˜Yi

k. To this end, we
extend ˜Yi

k to Yi
k, so that the latter encompasses a contiguous set

of frames including ˜Yi
k and delimited by scene changes. This is

illustrated in Figure 2b for the shots extracted from Y1 and Y2 in
our example. In our work, we identify scene changes when the av-
erage luminance suddenly changes from a frame to another. This is
achieved by thresholding l(n). Note that this step is necessary if we
want to reconstruct the parent sequence starting from partially over-
lapping shots. For example, shots X2

1 and X3
1 would be considered

to belong to different parent sequences if we neglected this simple,
yet important step. Indeed, it is the reuse of shot X4

1 that provides
the necessary link between X2

1 and X3
1.

Parent reconstruction: Once all the reused shots Yi
k have been

identified and temporally aligned with respect to each other, we need
to cluster together shots belonging to the same parent sequence. To
this purpose, we build a graph where every node represents a shot
Yi

k, and we link together pairs of nodes whose corresponding shots
share a common subsequence. Then, the topology of the resulting
graph is analyzed so that each connected component is assigned to a
parent sequence. For example, Figure 1 (right) shows the graph built
considering all the shots in Y1, Y2, Y3 and Y4. Two connected
components are identified, one for each parent sequence.

In order to reconstruct each parent sequence, for each connected
component of the graph, we select as root the node with the high-
est degree, and run a Depth-First Search (DFS) algorithm to find an
acyclic path traversing the graph. Shots are then re-aligned with the
root according to the selected path.

3. EXPERIMENTS AND RESULTS
In order to validate the proposed method, we considered three
datasets. The first dataset was used to evaluate individually the
different steps of the method and to determine the values of the
configuration parameters. This dataset consists of a pool of near-
duplicates generated starting from eight sequences of 300 frames
each at CIF spatial resolution, namely: city, crew, foreman, hall,

Y1

Y2

Ỹ1
1 Ỹ2

1

Ỹ1
2 Ỹ2

2

(a)

Y1

Y2

Y1
1

Y1
2 Y2

2

Y2
1

(b)

Y1

Y2

Y1
1

Y1
2 Y2

2

Y2
1

(c)

Fig. 2: An example showing the near-duplicate matching, alignment and shot extraction when comparing two sequences.

n
1

n
2

100 200 300 400

100

200

300

400

n
1

n
2

100 200 300 400

100

200

300

400 0

8

16

24

32

40

48

56

64

Fig. 3: Distance matrices Dk1,k2(n1, n2). Pairs of sequences con-
taining (left) or not containing (right) near-duplicate subsequences.

n
1

n
2

100 200 300 400

100

200

300

400

(a)

n
1

n
2

100 200 300 400

100

200

300

400

(b)

n
1

n
2

100 200 300 400

100

200

300

400

(c)

Fig. 4: Examples of Dk1,k2(n1, n2) before (a) and after (b) mor-
phological opening. (c) Estimated segments representing matching
subsequences.

3. For each connected component, analyze the underlying val-
ues of Dk1,k2 and determine the coordinates of the minimum
value along every row and column (indicated as black crosses
in Figure 4c). Then, fit a line passing through these minima.

Note that, since the analysis is performed on every connected com-
ponent in Step 2, the algorithm is able to find more than one segment
in each matrix, as illustrated in Figure 4c for the pair Y1 and Y2.

Near-duplicate extraction: The analysis of the segments iden-
tified at the previous step reveals which parts of the sequences Yk1

and Yk2 are near-duplicates. Let us denote with (s1, s2) the start
point of a segment, and with (e1, e2) its end point. This means
that the frames of Yk1 , {Yk1(s1), . . . ,Yk1(e1 + 63)}, are near-
duplicates of the block of frames of Yk2 , {Yk2(s2), . . . ,Yk2(e2 +
63)}, where the constant value 63 considers the fact that hashes
are computed on blocks of 64 frames. As indicated in Figure 2a,
two correspondences are identified when considering the pair of se-
quences Y1 and Y2, namely ˜Y1

1 $ ˜Y1
2 and ˜Y2

1 $ ˜Y2
2 . In general,

˜Yi
k denotes the i-th subsequence in sequence Yk, which is found to

be matching with another subsequence. Without loss of generality,
we assign the index i based on the index of the first frame in ˜Yi

k.
Near-duplicate alignment: Once ˜Yk1 and ˜Yk2 are extracted,

we perform an additional step of fine temporal alignment between
the shots. Indeed, the estimation of the start and end points of a seg-
ment from the matrix Dk1,k2 is affected by noise due to different
sources: i) the limited temporal resolution of the hash, which groups
together blocks of 64 frames; and ii) the uncertain localization of
local minima in Dk1,k2 . To this purpose, we resort to a monodimen-

sional description of a video over time, inspired by the work in [17].
More specifically, given an arbitrary video sequence Y, we compute
the difference between the average luminance of adjacent frames as

l(n) = avgluma(Y(n))� avgluma(Y(n� 1)), (2)

where avgluma(.) extracts the average of the luminance component
of a frame. The alignment between two subsequences ˜Yi1

k1
and ˜Yi2

k2

containing a matching near-duplicate subsequence is performed by
looking at the position of the highest peak of the phase-correlation
between li1k1

and li2k2
. That is,

ni1,i2
k1,k2

= argmax

n
F�1

"
Li1

k1
· Li2⇤

k2

|Li1
k1

· Li2⇤
k2

|

#
(n), (3)

where Li
k = F [lik] denotes the Fourier transform, ‘ ⇤ ’ indicates the

complex conjugate operator, and ‘ · ’ the element-wise product.
Shot extraction: Given a near-duplicate matching shot ˜Yi

k, we
want to identify the shot in Yk that includes ˜Yi

k. To this end, we
extend ˜Yi

k to Yi
k, so that the latter encompasses a contiguous set

of frames including ˜Yi
k and delimited by scene changes. This is

illustrated in Figure 2b for the shots extracted from Y1 and Y2 in
our example. In our work, we identify scene changes when the av-
erage luminance suddenly changes from a frame to another. This is
achieved by thresholding l(n). Note that this step is necessary if we
want to reconstruct the parent sequence starting from partially over-
lapping shots. For example, shots X2

1 and X3
1 would be considered

to belong to different parent sequences if we neglected this simple,
yet important step. Indeed, it is the reuse of shot X4

1 that provides
the necessary link between X2

1 and X3
1.

Parent reconstruction: Once all the reused shots Yi
k have been

identified and temporally aligned with respect to each other, we need
to cluster together shots belonging to the same parent sequence. To
this purpose, we build a graph where every node represents a shot
Yi

k, and we link together pairs of nodes whose corresponding shots
share a common subsequence. Then, the topology of the resulting
graph is analyzed so that each connected component is assigned to a
parent sequence. For example, Figure 1 (right) shows the graph built
considering all the shots in Y1, Y2, Y3 and Y4. Two connected
components are identified, one for each parent sequence.

In order to reconstruct each parent sequence, for each connected
component of the graph, we select as root the node with the high-
est degree, and run a Depth-First Search (DFS) algorithm to find an
acyclic path traversing the graph. Shots are then re-aligned with the
root according to the selected path.

3. EXPERIMENTS AND RESULTS
In order to validate the proposed method, we considered three
datasets. The first dataset was used to evaluate individually the
different steps of the method and to determine the values of the
configuration parameters. This dataset consists of a pool of near-
duplicates generated starting from eight sequences of 300 frames
each at CIF spatial resolution, namely: city, crew, foreman, hall,

Y1

Y2

Ỹ1
1 Ỹ2

1

Ỹ1
2 Ỹ2

2

(a)

Y1

Y2

Y1
1

Y1
2 Y2

2

Y2
1

(b)

Y1

Y2

Y1
1

Y1
2 Y2

2

Y2
1

(c)

Fig. 2: An example showing the near-duplicate matching, alignment and shot extraction when comparing two sequences.

n
1

n
2

100 200 300 400

100

200

300

400

n
1

n
2

100 200 300 400

100

200

300

400 0

8

16

24

32

40

48

56

64

Fig. 3: Distance matrices Dk1,k2(n1, n2). Pairs of sequences con-
taining (left) or not containing (right) near-duplicate subsequences.

n
1

n
2

100 200 300 400

100

200

300

400

(a)

n
1

n
2

100 200 300 400

100

200

300

400

(b)

n
1

n
2

100 200 300 400

100

200

300

400

(c)

Fig. 4: Examples of Dk1,k2(n1, n2) before (a) and after (b) mor-
phological opening. (c) Estimated segments representing matching
subsequences.

3. For each connected component, analyze the underlying val-
ues of Dk1,k2 and determine the coordinates of the minimum
value along every row and column (indicated as black crosses
in Figure 4c). Then, fit a line passing through these minima.

Note that, since the analysis is performed on every connected com-
ponent in Step 2, the algorithm is able to find more than one segment
in each matrix, as illustrated in Figure 4c for the pair Y1 and Y2.

Near-duplicate extraction: The analysis of the segments iden-
tified at the previous step reveals which parts of the sequences Yk1

and Yk2 are near-duplicates. Let us denote with (s1, s2) the start
point of a segment, and with (e1, e2) its end point. This means
that the frames of Yk1 , {Yk1(s1), . . . ,Yk1(e1 + 63)}, are near-
duplicates of the block of frames of Yk2 , {Yk2(s2), . . . ,Yk2(e2 +
63)}, where the constant value 63 considers the fact that hashes
are computed on blocks of 64 frames. As indicated in Figure 2a,
two correspondences are identified when considering the pair of se-
quences Y1 and Y2, namely ˜Y1

1 $ ˜Y1
2 and ˜Y2

1 $ ˜Y2
2 . In general,

˜Yi
k denotes the i-th subsequence in sequence Yk, which is found to

be matching with another subsequence. Without loss of generality,
we assign the index i based on the index of the first frame in ˜Yi

k.
Near-duplicate alignment: Once ˜Yk1 and ˜Yk2 are extracted,

we perform an additional step of fine temporal alignment between
the shots. Indeed, the estimation of the start and end points of a seg-
ment from the matrix Dk1,k2 is affected by noise due to different
sources: i) the limited temporal resolution of the hash, which groups
together blocks of 64 frames; and ii) the uncertain localization of
local minima in Dk1,k2 . To this purpose, we resort to a monodimen-

sional description of a video over time, inspired by the work in [17].
More specifically, given an arbitrary video sequence Y, we compute
the difference between the average luminance of adjacent frames as

l(n) = avgluma(Y(n))� avgluma(Y(n� 1)), (2)

where avgluma(.) extracts the average of the luminance component
of a frame. The alignment between two subsequences ˜Yi1

k1
and ˜Yi2

k2

containing a matching near-duplicate subsequence is performed by
looking at the position of the highest peak of the phase-correlation
between li1k1

and li2k2
. That is,

ni1,i2
k1,k2

= argmax

n
F�1

"
Li1

k1
· Li2⇤

k2

|Li1
k1

· Li2⇤
k2

|

#
(n), (3)

where Li
k = F [lik] denotes the Fourier transform, ‘ ⇤ ’ indicates the

complex conjugate operator, and ‘ · ’ the element-wise product.
Shot extraction: Given a near-duplicate matching shot ˜Yi

k, we
want to identify the shot in Yk that includes ˜Yi

k. To this end, we
extend ˜Yi

k to Yi
k, so that the latter encompasses a contiguous set

of frames including ˜Yi
k and delimited by scene changes. This is

illustrated in Figure 2b for the shots extracted from Y1 and Y2 in
our example. In our work, we identify scene changes when the av-
erage luminance suddenly changes from a frame to another. This is
achieved by thresholding l(n). Note that this step is necessary if we
want to reconstruct the parent sequence starting from partially over-
lapping shots. For example, shots X2

1 and X3
1 would be considered

to belong to different parent sequences if we neglected this simple,
yet important step. Indeed, it is the reuse of shot X4

1 that provides
the necessary link between X2

1 and X3
1.

Parent reconstruction: Once all the reused shots Yi
k have been

identified and temporally aligned with respect to each other, we need
to cluster together shots belonging to the same parent sequence. To
this purpose, we build a graph where every node represents a shot
Yi

k, and we link together pairs of nodes whose corresponding shots
share a common subsequence. Then, the topology of the resulting
graph is analyzed so that each connected component is assigned to a
parent sequence. For example, Figure 1 (right) shows the graph built
considering all the shots in Y1, Y2, Y3 and Y4. Two connected
components are identified, one for each parent sequence.

In order to reconstruct each parent sequence, for each connected
component of the graph, we select as root the node with the high-
est degree, and run a Depth-First Search (DFS) algorithm to find an
acyclic path traversing the graph. Shots are then re-aligned with the
root according to the selected path.

3. EXPERIMENTS AND RESULTS
In order to validate the proposed method, we considered three
datasets. The first dataset was used to evaluate individually the
different steps of the method and to determine the values of the
configuration parameters. This dataset consists of a pool of near-
duplicates generated starting from eight sequences of 300 frames
each at CIF spatial resolution, namely: city, crew, foreman, hall,

Y1

Y2

Ỹ1
1 Ỹ2

1

Ỹ1
2 Ỹ2

2

(a)

Y1

Y2

Y1
1

Y1
2 Y2

2

Y2
1

(b)

Y1

Y2

Y1
1

Y1
2 Y2

2

Y2
1

(c)

Fig. 2: An example showing the near-duplicate matching, alignment and shot extraction when comparing two sequences.

n
1

n
2

100 200 300 400

100

200

300

400

n
1

n
2

100 200 300 400

100

200

300

400 0

8

16

24

32

40

48

56

64

Fig. 3: Distance matrices Dk1,k2(n1, n2). Pairs of sequences con-
taining (left) or not containing (right) near-duplicate subsequences.

n
1

n
2

100 200 300 400

100

200

300

400

(a)

n
1

n
2

100 200 300 400

100

200

300

400

(b)

n
1

n
2

100 200 300 400

100

200

300

400

(c)

Fig. 4: Examples of Dk1,k2(n1, n2) before (a) and after (b) mor-
phological opening. (c) Estimated segments representing matching
subsequences.

3. For each connected component, analyze the underlying val-
ues of Dk1,k2 and determine the coordinates of the minimum
value along every row and column (indicated as black crosses
in Figure 4c). Then, fit a line passing through these minima.

Note that, since the analysis is performed on every connected com-
ponent in Step 2, the algorithm is able to find more than one segment
in each matrix, as illustrated in Figure 4c for the pair Y1 and Y2.

Near-duplicate extraction: The analysis of the segments iden-
tified at the previous step reveals which parts of the sequences Yk1

and Yk2 are near-duplicates. Let us denote with (s1, s2) the start
point of a segment, and with (e1, e2) its end point. This means
that the frames of Yk1 , {Yk1(s1), . . . ,Yk1(e1 + 63)}, are near-
duplicates of the block of frames of Yk2 , {Yk2(s2), . . . ,Yk2(e2 +
63)}, where the constant value 63 considers the fact that hashes
are computed on blocks of 64 frames. As indicated in Figure 2a,
two correspondences are identified when considering the pair of se-
quences Y1 and Y2, namely ˜Y1

1 $ ˜Y1
2 and ˜Y2

1 $ ˜Y2
2 . In general,

˜Yi
k denotes the i-th subsequence in sequence Yk, which is found to

be matching with another subsequence. Without loss of generality,
we assign the index i based on the index of the first frame in ˜Yi

k.
Near-duplicate alignment: Once ˜Yk1 and ˜Yk2 are extracted,

we perform an additional step of fine temporal alignment between
the shots. Indeed, the estimation of the start and end points of a seg-
ment from the matrix Dk1,k2 is affected by noise due to different
sources: i) the limited temporal resolution of the hash, which groups
together blocks of 64 frames; and ii) the uncertain localization of
local minima in Dk1,k2 . To this purpose, we resort to a monodimen-

sional description of a video over time, inspired by the work in [17].
More specifically, given an arbitrary video sequence Y, we compute
the difference between the average luminance of adjacent frames as

l(n) = avgluma(Y(n))� avgluma(Y(n� 1)), (2)

where avgluma(.) extracts the average of the luminance component
of a frame. The alignment between two subsequences ˜Yi1

k1
and ˜Yi2

k2

containing a matching near-duplicate subsequence is performed by
looking at the position of the highest peak of the phase-correlation
between li1k1

and li2k2
. That is,

ni1,i2
k1,k2

= argmax

n
F�1

"
Li1

k1
· Li2⇤

k2

|Li1
k1

· Li2⇤
k2

|

#
(n), (3)

where Li
k = F [lik] denotes the Fourier transform, ‘ ⇤ ’ indicates the

complex conjugate operator, and ‘ · ’ the element-wise product.
Shot extraction: Given a near-duplicate matching shot ˜Yi

k, we
want to identify the shot in Yk that includes ˜Yi

k. To this end, we
extend ˜Yi

k to Yi
k, so that the latter encompasses a contiguous set

of frames including ˜Yi
k and delimited by scene changes. This is

illustrated in Figure 2b for the shots extracted from Y1 and Y2 in
our example. In our work, we identify scene changes when the av-
erage luminance suddenly changes from a frame to another. This is
achieved by thresholding l(n). Note that this step is necessary if we
want to reconstruct the parent sequence starting from partially over-
lapping shots. For example, shots X2

1 and X3
1 would be considered

to belong to different parent sequences if we neglected this simple,
yet important step. Indeed, it is the reuse of shot X4

1 that provides
the necessary link between X2

1 and X3
1.

Parent reconstruction: Once all the reused shots Yi
k have been

identified and temporally aligned with respect to each other, we need
to cluster together shots belonging to the same parent sequence. To
this purpose, we build a graph where every node represents a shot
Yi

k, and we link together pairs of nodes whose corresponding shots
share a common subsequence. Then, the topology of the resulting
graph is analyzed so that each connected component is assigned to a
parent sequence. For example, Figure 1 (right) shows the graph built
considering all the shots in Y1, Y2, Y3 and Y4. Two connected
components are identified, one for each parent sequence.

In order to reconstruct each parent sequence, for each connected
component of the graph, we select as root the node with the high-
est degree, and run a Depth-First Search (DFS) algorithm to find an
acyclic path traversing the graph. Shots are then re-aligned with the
root according to the selected path.

3. EXPERIMENTS AND RESULTS
In order to validate the proposed method, we considered three
datasets. The first dataset was used to evaluate individually the
different steps of the method and to determine the values of the
configuration parameters. This dataset consists of a pool of near-
duplicates generated starting from eight sequences of 300 frames
each at CIF spatial resolution, namely: city, crew, foreman, hall,

1 2

3 4

!69

Paolo Bestagini

Parent reconstruction

• Segment each sequence according to the matching shots:

!70

Paolo Bestagini

Parent reconstruction

• Segment each sequence according to the matching shots:

!70

Paolo Bestagini

Parent reconstruction

• Reconstruct the most part of the parent sequence for the analysis:

!71

Paolo Bestagini

Parent reconstruction

• Reconstruct the most part of the parent sequence for the analysis:

!71

Paolo Bestagini

• Being able to reconstruct the parent from the children enables to
shed very interesting insights on the way content is reused:

1. Analyse the context from which a child sequence was taken

2. Reconstruct sequences no longer available online in their
totality

3. Establish causal relationship between children

Parent reconstruction !72

Paolo Bestagini

Conclusions

• Remarks
• Forensics vs. Anti-forensics
• Single video analysis is just part of the problem
• Multiple video analysis paves the way to the development of novel

applications

• Open questions
• Merge results from content- and context-aware detectors

• Do metadata match the video content?
• Deal with big data

• Time-consuming algorithms need optimisation
• Deep learning

• Still under-investigated in video forensics (space-time?)
• Training data hardly available…

!73

Paolo Bestagini

References

• S. Verde, L. Bondi, P. Bestagini, S. Milani, G. Calvagno, S. Tubaro, “Video Codec Forensics Based on
Convolutional Neural Networks”, IEEE International Conference on Image Processing (ICIP), Athens, Greece,
2018

• S. Mandelli, D. Cozzolino, P. Bestagini, L. Verdoliva, S. Tubaro, “Blind Detection and Localization of Video
Temporal Splicing Exploiting Sensor-Based Footprints”, European Signal Processing Conference (EUSIPCO),
Rome, Italy, 2018

• S. Lameri, L. Bondi, P. Bestagini, S. Tubaro, “Near-Duplicate Video Detection Exploiting Noise Residual
Traces”, IEEE International Conference on Image Processing (ICIP), Beijing, China, 2017

• S. Milani, P. Bestagini, S. Tubaro, “Video Phylogeny Tree Reconstruction Using Aging Measures”, European
Signal Processing Conference (EUSIPCO), Kos, Greece, 2017

• F. Costa, S. Lameri, P. Bestagini, Z. Dias, S. Tubaro, A. Rocha, “Hash-Based Frame Selection for Video
Phylogeny”, IEEE International Workshop on Information Forensics and Security (WIFS), Abu Dhabi, UAE, 2016

• S. Lameri, P. Bestagini, S. Tubaro, “Video alignment for phylogenetic analysis”, European Signal Processing
Conference (EUSIPCO), Budapest, Hungary, 2016

• P. Bestagini, S. Milani, M. Tagliasacchi, S. Tubaro, “Codec and GOP Identification in Double Compressed
Videos”, IEEE Transactions on Image Processing, vol.25, no.5, pp.2298-2310, 2016

• F. O. Costa, S. Lameri, P. Bestagini, Z. Dias, A. Rocha, M. Tagliasacchi, S. Tubaro, “Phylogeny reconstruction for
misaligned and compressed video sequences”, IEEE International Conference on Image Processing (ICIP),
Québec City, Canada, 2015

!74

Paolo Bestagini

References

• S. Lameri, P. Bestagini, A. Melloni, S. Milani, A. Rocha, M. Tagliasacchi, S. Tubaro, “Who is my parent?
Reconstructing video sequences from partially matching shots” , IEEE International Conference on Image
Processing (ICIP), Paris, France, 2014

• P. Bestagini, S. Milani, M. Tagliasacchi, S. Tubaro, “Local tampering detection in video sequences” , IEEE
International Workshop on Multimedia Signal Processing (MMSP), Pula, Italy, 2013

• P. Bestagini, M. Visentini-Scarzanella, M. Tagliasacchi, P. L. Dragotti, S. Tubaro, “Video recapture detection
based on ghosting artifact analysis” , IEEE International Conference on Image Processing (ICIP), Melbourne,
Australia, 2013

• P. Bestagini, S. Milani, M. Tagliasacchi, S. Tubaro, “Video codec identification extending the idempotency
property” , European Workshop on Visual Information Processing (EUVIP), Paris, France, 2013

• P. Bestagini, S. Battaglia, S. Milani, M. Tagliasacchi, S. Tubaro, “Detection of temporal interpolation in video
sequences” , IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver,
Canada, 2013

• S. Milani, P. Bestagini, M. Tagliasacchi, S. Tubaro, “Multiple Compression Detection for Video Sequences” ,
IEEE International Workshop on Multimedia Signal Processing (MMSP), Banff, Canada, 2012

• S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva, M. Tagliasacchi, S. Tubaro, “An overview on video
forensics” , APSIPA Transactions on Signal and Information Processing, vol.1, 2012

• P. Bestagini, A. Allam, S. Milani, M. Tagliasacchi, S. Tubaro, “Video codec identification” , IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012

!75

Paolo Bestagini

Thank you for
the attention!

Any questions?

Massimiliano Zanoni

�18

any questions ?

Thank you for you attentions

