N POLITECNICO DI MILANO

REVERSE ENGINEERING OF VIDEO CONTENT FOR FORENSIC ANALYSIS

Paolo Bestagini Ph.D.

paolo.bestagini@polimi.it

Paolo Bestagini

Diffusion of multimedia sharing platforms

- Diffusion of multimedia sharing platforms
 - Huge amount of user-generated content

Paolo Bestagini

- Diffusion of multimedia sharing platforms
 - Huge amount of user-generated content

Availability of user-friendly video-editing software

- Diffusion of multimedia sharing platforms
 - Huge amount of user-generated content
- Availability of user-friendly video-editing software
 - Easy to tamper with videos

Δ

POLITECNICO DI MILANO

Paolo Bestagini

Paolo Bestagini

Paolo Bestagini

Paolo Bestagini

Paolo Bestagini

Paolo Bestagini

nature

- Diffusion of multimedia sharing platforms
 - Huge amount of user-generated content
- Availability of user-friendly video-editing software
 - Easy to tamper with videos

We cannot trust what we see!

Paolo Bestagini

POLITECNICO DI MILANO

Paolo Bestagini

- What can we do?
 - To develop a series of blind algorithms and tools for video forensic analyses working in a real world scenario.

- What can we do?
 - To develop a series of blind algorithms and tools for video forensic analyses working in a real world scenario.
- How?
 - Every non-reversible operation leaves peculiar footprints.
 - Footprints as an asset.

• What can we do?

To develop a series of blind algorithms and tools for video

- What can we do?
 - To develop a series of blind algorithms and tools for video forensic analyses working in a real world scenario.
- How?
 - Every non-reversible operation leaves peculiar footprints.
 - Footprints as an asset.

What can we do?

To develop a series of blind algorithms and tools for video

POLITECNICO DI MILANO

Paolo Bestagini

- What can we do?
 - To develop a series of blind algorithms and tools for video forensic analyses working in a real world scenario.
- How?
 - Every non-reversible operation leaves peculiar footprints.
 - Footprints as an asset.

• What can we do?

- What can we do?
 - To develop a series of blind algorithms and tools for video forensic analyses working in a real world scenario.

• How?

- Every non-reversible operation leaves peculiar footprints.
- Footprints as an asset.

 c_1

7

Paolo Bestagini

Paolo Bestagini

POLITECNICO DI MILANO

Work organisation

Coding-based footprints

- Videos are often encoded multiple times during their life-time
 - Information about acquisition device
 - The number of compression steps is an indicator of a video reliability

How many times has the video been compressed?

[Bestagini et al. MMSP 2012]

Paolo Bestagini

• Video coding:

Temporal redundancy

Spatial redundancy

Paolo Bestagini

POLITECNICO DI MILANO

Benford's law:

 The distribution of the first digit (FD) of a single quantized DCT coefficient approximatively follows Benford's law:

$$p(m) = K \log_{10} \left(1 + \frac{1}{\alpha + m^{\beta}} \right)$$
, with $m = 1, \dots, 9$.

• When multiple quantized, this law does not hold!

• Single quantized:

• Double quantized:

Paolo Bestagini

POLITECNICO DI MILANO

• Method 1:

- Compute FD histograms for a set of DCT frequencies.
- Train a set of SVMs.
- Combine SVMs outputs.

14

• Results:

Up to three compressions successfully detected

N, N^*	1	2	3
1	100 %	0.00~%	0.00~%
2	0.00~%	73.89~%	26.11~%
3	0.00~%	22.22~%	77.78 %

rue positive

[Bestagini et al. **ICASSP 2012**] [Bestagini et al. **EUVIP 2013**] [Bestagini et al. **TIP 2016**]

Idempotency property:

 if we re-quantize an already quantized signal with the same quantization step, the signal does not change

$$\hat{\mathbf{X}}_{1} = Q_{\Delta_{1}}(\mathbf{X}) = \Delta_{1} \left[\frac{\mathbf{X}}{\Delta_{1}} \right]$$
$$\hat{\mathbf{X}}_{2} = Q_{\Delta_{2}}(\hat{\mathbf{X}}_{1}) = \Delta_{1} \left[\frac{\Delta_{1} \left[\frac{\mathbf{X}}{\Delta_{1}} \right]}{\Delta_{1}} \right] = \hat{\mathbf{X}}_{1}$$

16

• This is partly true also for video codecs

$$\xrightarrow{\mathbf{X}} \mathbf{Codec 1} \xrightarrow{\hat{\mathbf{X}}_1} \mathbf{Codec 1} \xrightarrow{\hat{\mathbf{X}}_2} \hat{\mathbf{X}}_1$$

17

• Main idea:

• Main idea:

• Main idea:

• Approach:

POLITECNICO DI MILANO

QP

POLITECNICO DI MILANO

• Results:

		\hat{c}_1											
			MPEG-2			MPEG-4			AVC			DIRAC	
	MPEG-2	0.94	0.96	0.96	0.05	0.04	0.03	0	0	0.01	0.01	0	0
	MPEG-4 (a)	0	0	0.04	0.93	0.92	0.76	0.02	0.02	0.2	0.06	0.06	0
	MPEG-4 (b)	0.02	0.02	0.06	0.87	0.87	0.69	0.06	0.05	0.25	0.06	0.06	0
C1	AVC (a)	0.01	0	0	0.14	0.24	0.06	0.79	0.68	0.94	0.06	0.08	0
	AVC (b)	0	0.01	0	0.13	0.2	0.05	0.81	0.69	0.94	0.06	0.09	0.01
	AVC (c)	0.06	0.06	0.15	0	0.03	0	0.92	0.87	0.81	0.02	0.05	0.04
	DIRAC	0	0.02	0	0.09	0.12	0.01	0.13	0.12	0.21	0.78	0.74	0.78
I		MPEG-2	MPEG-4	AVC	MPEG-2	MPEG-4	AVC	MPEG-2	MPEG-4	AVC	MPEG-2	MPEG-4	AVC

 C_2

Are **codec** and **quality** coherent in time?

[Verde et al. ICIP 2018]

Paolo Bestagini

Problem

 Given a decoded video sequence, detect whether it is a compilation from multiple video shots.

Assumptions

 Shots are seldom originally encoded with the exact same codec or parameters due to different sources and used software.

Main Pipeline

- Compute a frame-wise indicator of the used codec
- Compute a frame-wise indicator of the video quality
- Check inconsistency of these indicators frame-by-frame

Feature Extraction

Codec Features

- A CNN is trained to classifiy 4 different codecs (MPEG2, MPEG4, H264, H265)
- Feature vector is $\mathbf{f}_{C}^{p}(n) = [f_{H264}^{p}(n), f_{H265}^{p}(n), f_{MPEG2}^{p}(n), f_{MPEG4}^{p}(n)]$

Quality Features

- A CNN is trained to classifiy 4 different qualities (H264 with QP=5, 10, 15, 20)
- Feature vector is $\mathbf{f}_{Q}^{p}(n) = [f_{\text{low}}^{p}(n), f_{\text{m-low}}^{p}(n), f_{\text{m-high}}^{p}(n), f_{\text{high}}^{p}(n)]$

Temporal inconsistency analysis

Feature Merge

• Feature vectors are concatenated into a single one

 $\mathbf{f}_{\mathrm{CQ}}(n) = [\mathbf{f}_{\mathrm{C}}(n), \, \mathbf{f}_{\mathrm{Q}}(n)]$

24

Time Analysis

Compute MSE between feature pairs

 $\Delta \mathbf{f}_{CQ}(n) = \mathrm{MSE}(\mathbf{f}_{CQ}(n), \ \mathbf{f}_{CQ}(n+1))$

Threshold MSE

Visual example

Challenging Example

Challenging Example

0.76 0.20 0.02 0.02 H264 0.85 0.01 0.02 0.12 H265 0.01 0.84 0.02 0.13 MPEG2 0.03 0.03 0.89 0.05 MPEG4 H265 MPEG2MPEG4 H264 Predicted

Video Quality Identification Results

high	0.84	0.12	0.04	0.00
m-high-	0.09	0.83	0.08	0.00
m-low ⁻	0.03	0.07	0.85	0.04
low	0.00	0.00	0.04	0.96
	high	m-high Pred	low	

Video Codec Identification Results

Paolo Bestagini

Splicing Detection Results

splicing

Type of

codec

Number of compressions

Coding-based footprints

30

POLITECNICO DI MILANO

30

POLITECNICO DI MILANO

Forged

Original

Forged

Original

Is the video forged?

[Bestagini et al. **ICASSP 2013**] [Bestagini et al. **MMSP 2013**]

Paolo Bestagini

- Video forgeries can be operated through different kinds of editing attacks
- We considered:
 - 1. insertion of a still image
 - 2. insertion of a portion of video from the same source
 - 3. insertion of a portion of video from a different source

34

Editing-based footprints: image copy-paste

- Problem:
 - An image is inserted and repeated in time

• Method:

Exploit characteristic residual between adjacent frames

Original

35

(a) Original residual

(c) Tampered and compresse residual

POLITECNICO DI MILANO

- Zero for possibly tampered pixels
- Define the residual mask as $m_{i,j}^t = \begin{cases} 1 & \text{if } r_{i,j}^t = 0, \\ 0 & \text{otherwise,} \end{cases}$
- Apply an erosion with a Structuring Element $\mathbf{H}^{di,dj,dt}$ and obtain $\mathbf{E} = \{e_{i,j}^t\} = \mathbf{M} \ominus \mathbf{H}^{di,dj,dt},$
 - Remove small areas
- Compute the feature vector $F_{i,j} = [f_{i,j}^1, f_{i,j}^2]$
 - $f_{i,j}^1$ cardinality of the longest set of ones in (*i*,*j*)
 - $f_{i,j}^2$ starting *t* value of the longest set of ones
- Search the longest set of ones starting from the same *t*

(a) Tampered frame

(b) Detected mask

Paolo Bestagini

• Problem:

A video is inserted from the same sequence

Method:

 Implementation of an automatic correlation analysis to detect local duplication

• Problem:

A video is inserted from the same sequence

Method:

 Implementation of an automatic correlation analysis to detect local duplication

Algorithm:

- Compute the residual $\mathbf{R} = \{r_{i,j}^t\}$
- Divide the residual into non-overlapping 3D blocks \mathbf{B}_m^n
- Compute the phase correlation

$$\mathbf{C}_{i,j}^t(\mathbf{B}_m^n) = \mathcal{F}^{-1}\left(\frac{\mathcal{F}(\mathbf{B}_m^n)\mathcal{F}(\mathbf{R})^*}{|\mathcal{F}(\mathbf{B}_m^n)\mathcal{F}(\mathbf{R})^*|}\right)$$

• Compute the maximum correlation value for each time position $c_{\mathbf{B}_m^n}^t = \max_{i,j} \left(|\mathbf{C}_{i,j}^t(\mathbf{B}_m^n)| \right)$

$$\frac{1}{200} \int_{-\frac{1}{50}}^{\frac{1}{200}} \int_{-\frac{1}{50}}^{-\frac{1}{200}} \int_{-\frac{1}{$$

Search for peaks indicating duplication by thresholding the max-m

$$p_{\mathbf{B}_m^n} = \frac{\max(c_{\mathbf{B}_m^n}^t)}{\frac{1}{(T-1)}\sum_t c_{\mathbf{B}_m^n}^t}$$

• Check if the detected duplicated block is similar to its original version (MSE)

POLITECNICO DI MILANO

40

original

forged

detected duplication

Paolo Bestagini

• Problem:

 A video is inserted from the same a different sequence at with different frame-rate

• Method:

- Search for traces left by frame-rate equalisation
- Up-sampling and down-sampling leave a characteristic pixel correlation in time

Algorithm:

- Estimate each frame from their neighbors
 - Compute motion vectors
 - Average frames
- Compute the prediction error
 - Original frames → high error
 - Predicted frames → low error

$$e_{ij}(\omega t) = X_{ij}^{\omega}(\omega t) - \sum_{\substack{k=-K \\ \text{Analysis filter}}}^{K} h_k^* \cdot X_{\substack{m_{t,i,j}n_{t,i,j}}}^{\omega}(\omega t + \omega k)$$

$$\text{Estimated MVs}$$

$$e(\omega t) = \sum_{ij} |e_{ij}(\omega t)|^2$$

- Estimate error periodicity (spectral analysis)
 - If non-periodic \rightarrow not interpolated
 - If periodic → interpolated

Paolo Bestagini

Re-capture

Acquisition-based footprints

Acquisition-based footprints

45

Paolo Bestagini

POLITECNICO DI MILANO

Acquisition-based footprints

45

Paolo Bestagini

POLITECNICO DI MILANO

Acquisition-based footprints

• Re-acquisition is a powerful ant.

46

Re-acquired videos are visually similar to the originals

Is the video recaptured?

[Bestagini et al. ICIP 2013]

Paolo Bestagini

Acquisition-based footprints: re-capture

• Setup:

A video is re-captured from a LCD monitor

Ghosting as filtering:

Approximating the motion as a translation between adjacent frames:

Acquisition-based footprints: re-capture

• Filter shape is derived from motion estimation

Acquisition-based footprints: re-capture

• Method:

 Minimize a cost function to deτect whether κey-points underwent "ghosting filtering"

• Results:

Detection accuracy over 91%

POLITECNICO DI MILANO

From which camera does the video come from?

[Mandelli et al. **EUSIPCO 2018**] [Mandelli et al. **to be submitted**]

Paolo Bestagini

Acquisition-based footprints: camera attribution

- Photo Response Non Uniformity:
 - It enables linking images to devices

52

• How to:

- Extract noise pattern from images
- Compute correlation

POLITECNICO DI MILANO

Paolo Bestagini

Acquisition-based footprints: camera attribution

• Application:

Video compilation detection and segmentation

- Method:
 - Compute cumulative correlation $c(f) = \rho(\mathbf{W}_r, \overline{\mathbf{W}}(f)\mathbf{I}_r)$

Paolo Bestagini

POLITECNICO DI MILANO

Acquisition-based footprints: camera attribution

• Challenges:

- Aggressive coding
- Digital video stabilizaion

Work organisation

Put everything together

POLITECNICO DI MILANO

56

Paolo Bestagini

Applications

Paolo Bestagini

Coding-based applications

- Which video has been more processed?
 - Extend Benford's law to base-N first digits
 - Fit logarithmic curve
 - Check goodness of fit (processing age)
 - The better, the younger!

60

[Milani et al. EUSIPCO 2017]

Acquisition-based applications

[Lameri et al. ICIP 2017]

• Which views are the redundant?

match video PRNUs to detect those from same device

Paolo Bestagini

- Who is my parent?
- It is possible that we are analysing a short shot (child) of a longer sequence (parent)
 - e.g., a VIP speech

 Can we find other (partially overlapping) child sequences to reconstruct the parent?

• Download a set of videos related to the topic under analysis:

Paolo Bestagini

• Download a set of videos related to the topic under analysis:

Paolo Bestagini

- Analyse each pair of sequences exploiting a robust hash algorithm
 - A sequence is split in overlapping time segments of 64 frames each

- Analyse each pair of sequences exploiting a robust hash algorithm
 - each block is described by a binary hash

- Every frame in the block is **spatially resized** to 32x32 pixels
 - The block now measures 32x32x64 pixels
- **3D DCT** is applied to the block
- 64 DCT coefficients are selected
- This 64 DCT coefficients are **binarized** according to their median value
 - 32 are set to zero, 32 are set to 1
- The hash is this 64 binary string

- Analyse each pair of sequences exploiting a robust hash algorithm
 - Hashes of different blocks are compared by computing hamming distance

 Compute the distance between every block of sequence l and every block of sequence2

• Non-near duplicates

- High distance
- No regular patterns

Near duplicates

- Low distances = matching
- Start and end points used for alignment

• Analyse each pair of sequences exploiting a robust hash algorithm:

Paolo Bestagini

• Analyse each pair of sequences exploiting a robust hash algorithm:

Paolo Bestagini

POLITECNICO DI MILANO

69

Paolo Bestagini

• Segment each sequence according to the matching shots:

Paolo Bestagini

POLITECNICO DI MILANO

• Segment each sequence according to the matching shots:

Paolo Bestagini

POLITECNICO DI MILANO

• Reconstruct the most part of the **parent** sequence for the analysis:

Reconstruction of parent

Paolo Bestagini

71

• Reconstruct the most part of the **parent** sequence for the analysis:

Reconstruction of parent

Paolo Bestagini

71

- Being able to reconstruct the parent from the children enables to shed very interesting insights on the way content is reused:
 - 1. Analyse the **context** from which a child sequence was taken
 - 2. **Reconstruct** sequences no longer available online in their totality
 - 3. Establish causal relationship between children

Conclusions

Remarks

- Forensics vs. Anti-forensics
- Single video analysis is just part of the problem
- Multiple video analysis paves the way to the development of novel applications

Open questions

- Merge results from content- and context-aware detectors
 - Do metadata match the video content?
- Deal with big data
 - Time-consuming algorithms need optimisation
- Deep learning
 - Still under-investigated in video forensics (space-time?)
 - Training data hardly available...

References

- S. Verde, L. Bondi, P. Bestagini, S. Milani, G. Calvagno, S. Tubaro, "Video Codec Forensics Based on Convolutional Neural Networks", IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018
- S. Mandelli, D. Cozzolino, P. Bestagini, L. Verdoliva, S. Tubaro, "Blind Detection and Localization of Video Temporal Splicing Exploiting Sensor-Based Footprints", European Signal Processing Conference (EUSIPCO), Rome, Italy, 2018
- S. Lameri, L. Bondi, P. Bestagini, S. Tubaro, "Near-Duplicate Video Detection Exploiting Noise Residual Traces", IEEE International Conference on Image Processing (ICIP), Beijing, China, 2017
- S. Milani, P. Bestagini, S. Tubaro, "Video Phylogeny Tree Reconstruction Using Aging Measures", European Signal Processing Conference (EUSIPCO), Kos, Greece, 2017
- F. Costa, S. Lameri, P. Bestagini, Z. Dias, S. Tubaro, A. Rocha, "Hash-Based Frame Selection for Video Phylogeny", IEEE International Workshop on Information Forensics and Security (WIFS), Abu Dhabi, UAE, 2016
- S. Lameri, P. Bestagini, S. Tubaro, "Video alignment for phylogenetic analysis", European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 2016
- P. Bestagini, S. Milani, M. Tagliasacchi, S. Tubaro, "Codec and GOP Identification in Double Compressed Videos", IEEE Transactions on Image Processing, vol.25, no.5, pp.2298-2310, 2016
- F. O. Costa, S. Lameri, P. Bestagini, Z. Dias, A. Rocha, M. Tagliasacchi, S. Tubaro, "Phylogeny reconstruction for misaligned and compressed video sequences", IEEE International Conference on Image Processing (ICIP), Québec City, Canada, 2015

References

- S. Lameri, P. Bestagini, A. Melloni, S. Milani, A. Rocha, M. Tagliasacchi, S. Tubaro, "Who is my parent? Reconstructing video sequences from partially matching shots", IEEE International Conference on Image Processing (ICIP), Paris, France, 2014
- P. Bestagini, S. Milani, M. Tagliasacchi, S. Tubaro, "Local tampering detection in video sequences", IEEE International Workshop on Multimedia Signal Processing (MMSP), Pula, Italy, 2013
- P. Bestagini, M. Visentini-Scarzanella, M. Tagliasacchi, P. L. Dragotti, S. Tubaro, "Video recapture detection based on ghosting artifact analysis", IEEE International Conference on Image Processing (ICIP), Melbourne, Australia, 2013
- P. Bestagini, S. Milani, M. Tagliasacchi, S. Tubaro, "Video codec identification extending the idempotency property", European Workshop on Visual Information Processing (EUVIP), Paris, France, 2013
- P. Bestagini, S. Battaglia, S. Milani, M. Tagliasacchi, S. Tubaro, "Detection of temporal interpolation in video sequences", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 2013
- S. Milani, P. Bestagini, M. Tagliasacchi, S. Tubaro, "Multiple Compression Detection for Video Sequences", IEEE International Workshop on Multimedia Signal Processing (MMSP), Banff, Canada, 2012
- S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva, M. Tagliasacchi, S. Tubaro, "An overview on video forensics", APSIPA Transactions on Signal and Information Processing, vol.1, 2012
- P. Bestagini, A. Allam, S. Milani, M. Tagliasacchi, S. Tubaro, "Video codec identification", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012

Thank you for the attention!

Any questions?

Paolo Bestagini

POLITECNICO DI MILANO