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Motivation - Why graphs?

@ Graphs have been successfully employed in plenty of supervised,
unsupervised and semi-supervised tasks.
@ Traditional methods provides:

Representing arbitrary distribution
e Uncover topological relationships

o Allow Hierarchical representation

e High computational costs

The K-associated graph and the Attribute-based Decision graphs
@ Alternative graph representations
@ Low computational costs
@ Intuitive and probabilistic representation of the data
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The K-associated Graph
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K-associated graph

o Consider a data set X = {xy,...,xy} where each case x; has an
associated class label ¢; € Q = {wy, w2, ..., wm }.
@ The K-associated graph is constructed as follows:!.
@ Each x;, is represented by a vertex v;, accordingly ¢; stands for the
label of v;.
@ Connect v; to all its K nearest neighbors that share the same class.
Properties
e The K-associated graph can be seen as a set of dinjoint components
C, € C:{Cl,...,CR} N<R<SM.
o As only vertices belonging to the same class can be connected. Each
component is associated to only one data class.
e Raising K, monotonically decreases the number of components.

1 — .
J.R. Bertini Jr., L. Zhao, R. Motta, A.A. Lopes, A nonparametric classification method based on k-associated graphs,
Information Sciences 181 (2011) 5435-5456.
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The Purity measure in the K-associated Graph

o Let the D, be the average degree of component C,
o and degree of v; being d; = d!" + d?*
@ And the purity measure of the component C,, denoted as ®,, is
defined by ¢, = E—,’g.

¥ v
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“U2K 2x3 2K 2x3 TU2K 2x3

Figure: Examples of purity calculation considering K = 3.

@ Purity quantifies how intertwined are the vertices of different
components.

@ Can be used as a priori probability for the component.
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The K-associated optimal graph

@ By varying K, some graphs may have better components than others
according to the purity measure.
@ We want to obtain a graph with the best components!
e Increase K, while keeping track of the best components
e By replacing components in the optimal graph according to:

q>gK+Z) > o) for all ¢ ¢ C}f“’

Kmax-associated graph

1-associated graph 2-associated graph
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K-associated ptimal graph
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The KAOG classifier

@ During classification, purity and K of each component are used to
infer the probability of new case to belong to it.

Class w;

[ Cs

K,=3 K;=2
$,=0.81 ¢;=0.33

C:

Class w;
C, Cs

K,=2 Ks=3
$;,=05 P;=0.79
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The K-associated Graph

Classification of stationary data
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KAOG - some classification results

Comparison results through fifteen knowledge domains each with three
levels of noise. All algorithm used for comparison had its paramter
adjusted in the model selection phase: KNN and Weighted KNN (k),
Prototype KNN (p), C4.5 (cf,m) and M-SVM (C,c).

Table: Average accuracy rank of each algorithm over the 15 data sets

KAOG KNN Weight. KNN KNN Prot. C4.5 M-SVM
Avg. rank
orig. data 2.63 3.50 2.46 5.40 4.26 2.66
Avg. rank
noisy data 293 3.20 3.00 5.30 3.63 2.90
Avg. rank
all data 2.83 3.30 2.82 5.35 3.84 2.82
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KAOG - some classification results

Table: Classification results for the algorithms KAOG, KNN, Weighted KNN and
Gibbs Sampling when using the HEOM similarity measure

Domain [ kAoG ] KNN [ Weighted KNN | Gibbs
HEOM

Acute 99.3+2.3 (1) 045485 (k=1)(4) 95.4+83 (k=1)(3) | 96.9+4.8 (k=1)(2)
Heart 74147.9 (4) | 76.0£3.06 (k=7)(2) | 76.3£3.8 (k=10)(1) | 74.6£7.8 (k=2)(3)
Soybean 90.7+3.0 (2) 75.6+3.4 (k=1)(4) 759435 (k=2)(3) | 91.1+2.8 (k=3)(1)
Dermatology 94.543.3 (1) | 86.4+3.35 (k=1)(4) 86.6:£3.2 (k=2)(3) | 94.1£3.0 (k=5)(2)
Horse 69.946.1 (2) | 67.1 2.7 (k=9)(4) | 68.042.8 (k=10)(3) | 74.7+6.7 (k=1)(1)
Voting 92.9+3.7 (1) 90.5+1.6 (k=3)(4) 90.7+1.5 (k=4)(3) | 92.6+3.6 (k=6)(2)
Mammography | 74.4£3.8 (4) | 81.70.72 (k=19)(1) | 80.041.4 (k=29)(3) | 81.444.2 (k=9)(2)
Audiology 63.149.5 (2) 44,7452 (k=1)(4) 452451 (k=2)(3) | 67.249.3 (k=3)(1)
CTG 99.3+0.4 (2) 97.840.6 (k=1)(4) 98.2:0.8 (k=3)(3) | 99.60.4 (k=2)(1)
Annealing 98.942.1 (1) 88.9+2.2 (k=1)(4) 80.142.4 (k=4)(3) | 97.241.7 (k=2)(2)
Average Rank 19 35 3.8 1.8
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KAOG - some classification results

Table: Classification results for the algorithms KAOG, KNN, Weighted KNN and
Gibbs Sampling when using the HVDM similarity measure

Domain [ KAOG [ KNN [ Weighted KNN_ | Gibbs
HVDM

Acute 100.0+0.0 (1) | 96.047.6 (k=1)(3.5) | 96.0+7.7 (k=1)(35) | 97.2+4.6 (k=1)(2)
Heart 78.4+6.4 (4) 81.1+3.0 (k=7)(2) 81.242.9 (k=8)(1) 80.4+7.6 (k=2)(3)
Soybean 91.542.9 (1) 81.8+3.7 (k=1)(4) 81.9+3.7 (k=2)(3) 90.2+2.6 (k=2)(2)
Dermatology 97.642.3 (1) 042430 (k=1)(3.5) | 942431 (k=1)(3.5) | 95.8:+1.8 (k=3)(2)
Horse 99.640.94 (1.5) | 99.5+ 0.9 (k=3)(3) | 99.643.1 (k=4)(1.5) | 98.5+1.8 (k=1)(4)
Voting 095.643.0 (1) 03.3+1.8 (k=1)(4) 03.6+1.8 (k=2)(3) 94.9+3.1 (k=6)(2)
Mammography 74.31+4.7 (4) 81.9+1.1 (k=9)(1) 81.31+0.9 (k=27)(3) 81.743.1 (k=9)(2)
Audiology 715481 (2) 52.24+6.4(k=1)(4) 52.3+6.8 (k=1)(3) 79.048.9 (k=1)(1)
cTG 99.840.2 (1.5) | 99.746.4 (k=1)(3.5) | 99.740.2 (k=1)(3.5) | 99.8:0.2 (k=2)(1.5)
Annealing 03.1+2.4 (2) 87.5+2.3 (k=2)(3) 87.3+1.8 (k=12)(4) 94.342.2 (k=1)(1)
Average Rank 1.9 3.15 29 2.05
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K-associated graphs

Semi-supervised learning (transduction)
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Semi-supervised learning (tran

@ Transductive learning is a branch of semi-supervised learning

concerned with the task of spreading labels on a finite set of data.

o KAOGSS? is the K-associated variant for transductive learning

2
Bertini JR., J. R.; Zhao, L. A Purity Measure Based Transductive Learning Algorithm. Lecture Notes in Computer
Science. Springer, 2013. v. 7952. p. 405-412.
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Semi-supervised learning (tran

Table: Comparison results considering 100 labeled patterns.

Algorithm | g241c | g241d | Digitl | USPS [ COIL [ BCI [ Text |
KAOGSS 43.13 43.50 1.94 5.77 9.98 34.12 25.52
1-NN 4393 | 4245 | 389 | 581 | 17.35 | 48.67 | 30.11
SVM 2311 | 2464 | 553 | 975 | 22.93 | 34.31 | 26.45

MVU + 1-NN 43.01 38.20 2.83 6.50 28.71 | 47.89 | 32.83
LEM + 1-NN 40.28 37.49 6.12 7.64 23.27 | 44.83 | 30.77

QC + CMN 22.05 | 28.20 3.15 6.36 10.03 | 46.22 | 25.71
Discrete Reg. 43.65 41.65 2.77 4.68 9.61 47.67 | 24.00
TSVM 18.46 | 22.42 6.15 9.77 25.80 | 33.25 | 24.52
SGT 17.41 9.11 2.61 6.80 — 45.03 | 23.09

Cluster-Kernel 13.49 4.95 3.79 9.68 21.99 | 35.17 | 24.38
Data-Dep. Reg. 20.31 32.82 2.44 5.10 11.46 | 47.47 -—

LDS 18.04 23.74 3.46 4.96 13.72 | 43.97 | 23.15
Laplacian RLS 24.36 26.46 2.92 4.68 11.92 | 31.36 | 23.57
CHM (normed) | 24.82 | 25.67 3.79 7.65 -— 36.03 -
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The K-associated Graph

Classification of non-stationary data
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Classification in data stream

The KAOGINC3 is the incremental version of the KAOG algorithm to cope
with non-stationary data streams.

@ In non-stationary classification tasks, the underlying data distribution
changes over time.
@ ldeally, incremental learning algorithms must provide:
e Good classification performance

e Stability
e Low computational costs (processing time and memory)

@ A data stream can be addressed as a sequence of data chuncks
S={Y1,X1,..., Y&, Xe, ... },
e X; stands for labeled data sets
e Y; are unlabeled data sets

3J.R. Bertini Jr., L. Zhao, A. A. Lopes. An incremental learning algorithm based on the K-associated graph for
non-stationary data classification. Information Sciences, v. 246, p. 52-68, 2013.
August 16, 2018

Bertini Jr. (ST/UNICAMP) KAOG / AbDG



The KAOGINC algorithm

@ The KAOGINC scheme for data stream processing.
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data set X,

—
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The KAOGINC algorithm

@ KAOGINC stability and component structure.
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Experiments results

@ Error percentage along the stream processing - Artificial domains
Circle and Sine.
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Experiments results

@ Error percentage along the stream processing - Real domains
Electricity price and Poker hand.
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Experiments results - semi-supervised learning

o Data stream classification with partially labeled data.

e KAOGINC (incremental) + KAOGSS (transduction) =
KAOGINCSSL*
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Bertini, JR. J.R. Lopes, A., Zhao, L. Partially labeled data stream classification with the semi-supervised K-associated
graph. Journal of The Brazilian Computer Society, v. 18, p. 1-12, 2012.
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Attribute-based Decision Graphs (AbDG)
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Attribute-based Decision Graphs

@ The Attribute based Decision Graph (AbDG) is built from a given data set
aiming at mapping its attribute values interrelations to a graph structure.’

o A vertex represents an interval of values within an attribute;
o Edges are established between vertices from different attributes
accordingly to their values

- T= (Y1, e i)
Al | A | Q o~ —
X1 [ [ Xap | €1 § . '&: (81,0, Sut)
| [> ; : [:> : :
i ' . i
Xna | | Xngp | CON ° . ®
Consider a vector-based Build the vertex set dividing Create the edge set, Assign weights to
labeled data set the range of each attribute into  defining the graph structure every vertex and edge

disjoint intervals of values
(a) (b) (c) (d)

5J. R. Bertini Jr., M. C. Nicoletti, and Z. Liang, “Attribute-based decision graphs: a framework for multiclass data
classification,” Neural Networks, vol. 85, pp. 69-84, 2017.
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Attribute-based Decision Graphs

@ Possible graph structures
(a) p-partite graph - set of vertices are connected according to a
given order
e order interferes with graph structure
e provides a more concise representation
(b) complete p-partite graph - every pair of set of vertices is
connected
e order does not interferes with graph structure
e provide complex representation
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AbDG - motivation

@ Why building an AbDG?

Viz/ g

AR

Vi
Class w; Class w3

(e) ()

@ Similar data instances produce similar subgraphs when projected onto the
AbDG.

@ A class can be represented by a particular set of such subgraphs.
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Associating weights to the AbDG

A vector of weights with the size of the number of classes (M), is

associated to every vertices and edges.
@ Vertex v, is associated to weight vector Fa; = (71,...,™).
@ Edge (Vak,Vb,q) is associated to weight vector Ay b= (81,...,0m)

Vertex weights
Vertex weight is the conditional probability
of a given instance x; to belong to class wj,
Aveee A Ay given that x; . € I, «

Va/ Tas at N i

Lt (dld, ra,k(J) = P(wj“a,k) (1)
. 12/ Toz Edge weights
. Toz =(dbz, dbz]

Edge weight reflects the probability of a
given data instance x;, whose attribute
values x; 5 € I, x and x; » € Ip4 to belong to

Vs, / Ton, class wj

Iy =(dniny, dinyer)
APE() = P(willoklbg)  (2)

v :
Van, / Tan
Lun, =(dan,, dan,o1) 2k
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Determining the vertices weight

Considering a M-class problem

Each vertex v,; (1 <a<pand1l< k< n,) has a M-dimensional weight
vector [, x = (71,...,7j,...,7m) associated to it.

Let I, x be the kth interval of attribute A,, the weight ; is defined by:

. P(ls,k, w;j
Fasli) = Pl = Zgpes)

The joint probability P(/.,k,wj), reflects the probability of an instance having class w;
and value of attribute A, lying in interval I, .

[{xi|xi,a € lax A ci = wj}|
[{xilci = wi}|

The normalizing term is the sum of the probabilities P(/, «,wj) for all classes.

P(lak,wj) = P(w;)

M
P(lk) = P(lsk,wj)
j=1
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Determining the edges weights

Considering a M-class problem

Each edge has a weight vector A ‘Z.,H (61,...,0Mm), connecting the
vertices v, and V41,4, i.e. kth mterval of attribute A, and gth interval
of attribute A,+1

d; is defined as:

ab Pk, Ib,g,w))

Ay (J) P(wjllaks Ib,q) = W

Since P(/a,ka /b7q,wj) = P(wj)P(/&k, /b7q|wj), then define P(Ia’k, Ib’q|wj) as
the ratio of instances belonging to class w;, whose values of attribute A,
lay within the kth interval and those of the attribute Aj lay within the gth
interval, as in:

|{X,'|C,' =wjN\Xja€ Ia,k AXip € /b,q}|

[{xilei = wj}

P(la,k; Ib,glw;) =
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An example of an AbDG induced from the Iris domain

Petal width Petal lenght Sepal lenght Sepal width
(1;0;0) (1;0;0) (0.013;0.27;0.14)
(1.3;2.45) (2.0;2.95)

(0.1,0.8]

<0.12;0.76;0.1

(0.31;0.11;0.013)

(4.3;5.65]

<0.85;0.14;,0>

(0.12;0.1,0.16)
(2.95;3.35

(0.8;1.75]
(5.65;7.9)
<0,0,0 <0,0;3 (0.02:0.23;0.32) (0.2/0.006;0.03)
070.11,0.88> 3.35;4.4)
(1.75:2.5)
<0,0.021,0.97> (4.75:6.7)
(0,0.006;0.3)
(0,004032)

Figure: p-partite AbDG formed from the Iris domain.
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AbDG

Classification of stationary data
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Using AbDG's as Classifiers

@ Given an unlabeled pattern y, the classification proceeds similar to a
graph matching.

@ For instance, consider classify pattern y = (1.2,3.9,5.8,2.7) on the
AbDG obtained from lris.

Petal width Petal lenght Sepal lenght Sepal width
(1,0,0) (1,0,0 (0.013;0.27;0.14)
0.1,08]  (1,0,0) (1.1,2.45] (2.0,2.95]

(0.12;0.76;0.1

(0.31;0.11;0.013)

(0.12;0.1,0.16)
(2.95,3.35]
(0.8,1.75]

(0,0.32,0.03)

(5.65,7.9) 330.44: 0.
(0;0,0) 0 (0.02;0.23;,0.32) (0.2;0.006;0.03)
670.11;0. 3.35,4.4)

(0,0.021,0.97) (4.75,6.7)
(0,0.04;0.32)

(0;0.006;0.3)
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Classification results

Results obtained with C4.5, M-I ID3, W-KNN, PNN, M-SVM and AbDG in 20 knowledge

domains from the UCI-Repository. Each result is the classification accuracy rate averaged over

repeated 10-fold cross-validation process followed by its standard deviation.

Domain C4.5 M-I ID3 W-KNN PNN M-SVM AbDG

Tris 95514.9 (3) 93.915.6 (5) 921442 (6) 95.014.6 (4) 96.354.6 (1) | 958445 (2)
Wine 0324 5.90 (3) | 92.9+56 (4) 66.94+4.8 (5) | 62.2+10.4(6) | 97.7+2.9 (2) | 98.14+3.2 (1)
Balance 78.94+3.89 (4) | 75.5+2.5 (5) 72.243.7 (6) 87.645.8 (3) 008422 (2) | 91.7+1.3 (1)
Sonar 75.1490.17 (4) | 73.3+9.3 (5) 63.544.5 (6) 82.846.0 (2) 84.6+5.7 (1) | 817+ 7.6 (3)
Credit 74.043.6 (4) 71.943.3 (5) 85.740.7 (2) 70.444.7 (6) 83.74+4.1(3) | 89.0+3.9 (1)
Image 87.046.6 (3) 85.745.4 (4) 60.846.3 (6) | 74.7+10.3(5) | 90.0+4.7 (1) | 87.3+6.3 (2)
Glass 68.6+7.6 (3) 61.749.3 (4) 54.845.6 (5) 32.345.8 (6) 703482 (2) | 70.9+7.7 (1)
Pima 73.9+4.8 (4) 75.14+4.4 (2) 69.742.1 (5) 67.746.1 (6) 743+4.8 (3) | 76.5+4.6 (1)
WDBC 03.643.2 (3.5) | 93.6+1.9 (35) | 91.0+1.7 (5) 79.145.6 (6) 041423 (2) | 95.0+2.9 (1)
WPBC 76.642.2 (4) 76.245.2 (5) 75.842.8 (6) 77.049.1 (3) 78.8+7.6 (2) | 79.245.2 (1)
Flags 63.41+8.8 (2) 62.5+9.7 (3) 55.14+6.3 (5) 40.0+8.2 (6) 60.9+13.1 (4) 65.5+10.7 (1)
Waveform 71.6+6.9 (5) 64.446.1 (6) 75.31+3.5 (4) 76.0+6.9 (3) 80.01+6.3 (2) 80.8+£5.1 (1)
Heartspectf 7234143 (2) | 71.2+£145(4) | 687482 (5) | 57.5424.4 (6) | 71.7+£12.4 (3) | 81.4+4.3 (1)
Soybean 92.143.1 (3) 91.743.1 (4) 727432 (6) 91.342.6 (5) 94.6+25 (1) | 945424 (2)
Segment 96.5+2.1 (1) 91.5+1.9 (4) 86.14+1.2 (5) 78.7+3.7 (6) 93.6+1.1 (3) 94.24+1.3 (2)
Heartspect 74.5+7.6 (1) 68.116.4 (6) 69.9+4.4 (5) 70.3£7.4 (4) 71.4£8.8 (2) 70.4£8.3 (3)
Blood 78.6+3.5 (1) 76.2+1.5 (3.5) 72.4£2.4 (6) 76.2£5.2 (3.5) 75.7+1.4 (5) 77.8+3.3 (2)
Haberman 71.744.8 (6) 72.244.4 (5) 73.041.5 (3) 72.616.1 (4) 75.848.0 (1) | 753458 (2)
Post Oper. 67.7424.3 (3) | 70.0+5.1 (2) | 6574108 (5) | 60.14+13.0(6) | 65.8+15.8 (4) | 73.3+£7.5 (1)
Heart 83.349.1 (3) 75.148.8 (5) 76.44+4.0 (4) | 555+11.6 (6) | 84.4+5.7 (1) | 837465 (2)
Average Rank 3.125 4.25 5.0 4.825 2.25 1.55
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Imputation of missing data
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Missing attribute values

@ Missing attribute values is a common problem in most of real
applications
@ Facing this problem, two popular practices are employed:

e Discard the patterns with missing values;
e Use an imputation method to infer a plausible value.

@ Usually, imputation methods are used in the pre-processing phase;
prior to the learning algorithm;

e Many imputation algorithm needs a reasonable sized set to induce the
missing values;

@ AbDG has mechanisms to handle missing values by itself.

@ It can be used as an imputation method, to infer plausible values for
missing data®

6Bertini JR, J. R.; Nicoletti, M. C. ; ZHAO, L. . An embedded imputation method via Attribute-based Decision Graphs.
Expert Systems with Applications, v. 57, p. 159-177, 2016.

Bertini Jr. (ST/UNICAMP) KAOG / AbDG August 16, 2018 35 / 47



Performing imputation with the AbDG
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Imputation results

i ayeraged over fhe 14 domains

and original data averaged over the 14 domains
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Imputation results

—=— AbDG
—*— CAbDG

Accuracy difference (%) between imputed data
and original data for all teste classifiers averaged over the 14 domains

10 20 30 40 50 R
| | | I | I

20 30
Missing attribute value rate (%)

Figure: Differences in accuracy between imputed data and original data averaged
over all obtained results, for each missing attribute rate and imputation method.
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Enhancing data quality for classification
tasks
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Enhancing data quality with

@ The accuracy performance of an automatic classification system
strongly relies on the quality of the data set used to train it!

e Pre-processing tasks referred to as data cleansing, consist of searching
for values that are missing, corrupted, inconsistent or inaccurate, and
providing mechanisms for correcting them;

o Attribute noise detection can be a particularly difficult task, once that
noisy data may look like regular data.

o ldea: using the AbDG, check every attribute value for inconsistency,
through a procedure inspired in the AbDG imputation process.’
e The cleansing method systematically infers an interval of values for

each attribute value and verifies if the real value belongs to the inferred
interval.

Bertini Jr., J.R. A methodology for enhancing data quality for classification purposes using attribute-based decision
graphs. In: 2017 IEEE Latin American Conference on Computational Intelligence (LACCI), 2017.
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Enhancing data quality with the AbDG

Cleansing procedure based on the
‘3 ﬁ@ AbDG

@ Given a noisy data set X.

w@ @ Let D" be a subset of attribute values,
’ xz\ where X = D* U --- U DR and
. Ej D'Nn---NDR =0, forr=1...R.

) — @ For each D" build a CAbDG with the
dﬁ'fi'?ﬂ\ / dota et set X5, = X — D', referred to G;.
7 5 an @ Building X!: for each value in D", use
XE G, for estimating an interval of values
into which it should rely.

Figure: Cleansing procedure o If it relies within the inferred
conducted through a CAbDG. Run interval, keep it!.

for T times and join them using the o Otherwise, draw a random
modal interval. value within the interval.
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Data quality results

Wine domain with the following level of noise: 10%, 20%, 30%, 40%, 50% .
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Data quality results

Iris domain with the following level of noise: 10%, 20%, 30%, 40%, 50% .
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Classification accuracy results for the algorithms Parzen, MLP, KNN and Random Forest when trained with the cleansed data
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Data quality results

Credit domain with the following level of noise: 10%, 20%, 30%, 40%, 50% .
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Classification accuracy results for the algorithms Parzen, MLP, KNN and Random Forest when trained with the cleansed data
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Conclusions and future directions
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Conclusions and future directions

@ The K-associated graphs and Attribute-based Decision Graphs are
alternative graph models that have been successfully applied to
machine learning tasks, as:

Supervised and semi-supervised classification.
Learning from data stream.
Imputation of missing data.
Enhancement of data quality for classificaion.

@ Future directions.
o Rule extraction from AbDG for white-box classification in data stream.
o Active learning, using the K-associated approach, to cope with data
streams with few labeled data.
o Applying AbDG and K-associated graphs to pattern recognition
(image/video).
o Extending initial results.
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Q&A

Thanks for your attention!
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