Prof. Rocha has an article published in PAMI

Prof. Anderson Rocha, in cooperation with his colleagues Dr. Walter J. Scheirer, Ph.D. candidate Archana Sapkota, and Prof. Terrance E. Boult (all from University of Colorado, Colorado Springs), had an article accepted for publication in the prestigious journal IEEE  Transactions on Pattern Analysis and Machine Intelligence, “Toward Open Set Recognition”. Here’s the abstract:

To date, almost all experimental evaluations of machine learning-based recognition algorithms in computer vision have taken the form of “closed set” recognition, whereby all testing classes are known at training time. A more realistic scenario for vision applications is “open set” recognition, where incomplete knowledge of the world is present at training time, and unknown classes can be submitted to an algorithm during testing. This paper explores the nature of open set recognition and formalizes its definition as a constrained minimization problem. The open set recognition problem is not well addressed by existing algorithms because it requires strong generalization. As a step toward a solution, we introduce a novel “1-vs-set machine,” which sculpts a decision space from the marginal distances of a 1-class or binary SVM with a linear kernel. This methodology applies to several different applications in computer vision where open set recognition is a challenging problem, including object recognition and face verification. We consider both in this work, with large scale cross-dataset experiments performed over the Caltech 256 and ImageNet sets, as well as face matching experiments performed over the Labeled Faces in the Wild set. The experiments highlight the effectiveness of machines adapted for open set evaluation compared to existing 1-class and binary SVMs for the same tasks.

The work, to appear in the July 2013 issue (vol. 35, n. 7. pp. 1757–1772) is already available for download at the publisher’s site:


About eduardovalle

Professor at FEEC/UNICAMP, Brazil. Researcher on Machine Learning/Computer Vision, with emphasis on Health & Education applications.
This entry was posted in publications and tagged , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s